polars.all#
- polars.all(*names: str, ignore_nulls: bool = True) Expr [source]#
Either return an expression representing all columns, or evaluate a bitwise AND operation.
If no arguments are passed, this function is syntactic sugar for
col("*")
. Otherwise, this function is syntactic sugar forcol(names).all()
.- Parameters:
- *names
Name(s) of the columns to use in the aggregation.
- ignore_nulls
Ignore null values (default).
If set to
False
, Kleene logic is used to deal with nulls: if the column contains any null values and noFalse
values, the output is null.
See also
Examples
Selecting all columns.
>>> df = pl.DataFrame( ... { ... "a": [True, False, True], ... "b": [False, False, False], ... } ... ) >>> df.select(pl.all().sum()) shape: (1, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ u32 ┆ u32 │ ╞═════╪═════╡ │ 2 ┆ 0 │ └─────┴─────┘
Evaluate bitwise AND for a column.
>>> df.select(pl.all("a")) shape: (1, 1) ┌───────┐ │ a │ │ --- │ │ bool │ ╞═══════╡ │ false │ └───────┘