polars.Expr.rolling_quantile_by#
- Expr.rolling_quantile_by(
- by: IntoExpr,
- window_size: timedelta | str,
- *,
- quantile: float,
- interpolation: RollingInterpolationMethod = 'nearest',
- min_periods: int = 1,
- closed: ClosedInterval = 'right',
- warn_if_unsorted: bool | None = None,
Compute a rolling quantile based on another column.
Warning
This functionality is considered unstable. It may be changed at any point without it being considered a breaking change.
Given a
by
column<t_0, t_1, ..., t_n>
, thenclosed="right"
(the default) means the windows will be:(t_0 - window_size, t_0]
(t_1 - window_size, t_1]
…
(t_n - window_size, t_n]
- Parameters:
- by
This column must be of dtype Datetime or Date.
- quantile
Quantile between 0.0 and 1.0.
- interpolation{‘nearest’, ‘higher’, ‘lower’, ‘midpoint’, ‘linear’}
Interpolation method.
- window_size
The length of the window. Can be a dynamic temporal size indicated by a timedelta or the following string language:
1ns (1 nanosecond)
1us (1 microsecond)
1ms (1 millisecond)
1s (1 second)
1m (1 minute)
1h (1 hour)
1d (1 calendar day)
1w (1 calendar week)
1mo (1 calendar month)
1q (1 calendar quarter)
1y (1 calendar year)
By “calendar day”, we mean the corresponding time on the next day (which may not be 24 hours, due to daylight savings). Similarly for “calendar week”, “calendar month”, “calendar quarter”, and “calendar year”.
- min_periods
The number of values in the window that should be non-null before computing a result.
- closed{‘left’, ‘right’, ‘both’, ‘none’}
Define which sides of the temporal interval are closed (inclusive), defaults to
'right'
.- warn_if_unsorted
Warn if data is not known to be sorted by
by
column.Deprecated since version 0.20.27: This operation no longer requires sorted data, you can safely remove the
warn_if_unsorted
argument.
Notes
If you want to compute multiple aggregation statistics over the same dynamic window, consider using
rolling
- this method can cache the window size computation.Examples
Create a DataFrame with a datetime column and a row number column
>>> from datetime import timedelta, datetime >>> start = datetime(2001, 1, 1) >>> stop = datetime(2001, 1, 2) >>> df_temporal = pl.DataFrame( ... {"date": pl.datetime_range(start, stop, "1h", eager=True)} ... ).with_row_index() >>> df_temporal shape: (25, 2) ┌───────┬─────────────────────┐ │ index ┆ date │ │ --- ┆ --- │ │ u32 ┆ datetime[μs] │ ╞═══════╪═════════════════════╡ │ 0 ┆ 2001-01-01 00:00:00 │ │ 1 ┆ 2001-01-01 01:00:00 │ │ 2 ┆ 2001-01-01 02:00:00 │ │ 3 ┆ 2001-01-01 03:00:00 │ │ 4 ┆ 2001-01-01 04:00:00 │ │ … ┆ … │ │ 20 ┆ 2001-01-01 20:00:00 │ │ 21 ┆ 2001-01-01 21:00:00 │ │ 22 ┆ 2001-01-01 22:00:00 │ │ 23 ┆ 2001-01-01 23:00:00 │ │ 24 ┆ 2001-01-02 00:00:00 │ └───────┴─────────────────────┘
Compute the rolling quantile with the temporal windows closed on the right:
>>> df_temporal.with_columns( ... rolling_row_quantile=pl.col("index").rolling_quantile_by( ... "date", window_size="2h", quantile=0.3 ... ) ... ) shape: (25, 3) ┌───────┬─────────────────────┬──────────────────────┐ │ index ┆ date ┆ rolling_row_quantile │ │ --- ┆ --- ┆ --- │ │ u32 ┆ datetime[μs] ┆ f64 │ ╞═══════╪═════════════════════╪══════════════════════╡ │ 0 ┆ 2001-01-01 00:00:00 ┆ 0.0 │ │ 1 ┆ 2001-01-01 01:00:00 ┆ 0.0 │ │ 2 ┆ 2001-01-01 02:00:00 ┆ 1.0 │ │ 3 ┆ 2001-01-01 03:00:00 ┆ 2.0 │ │ 4 ┆ 2001-01-01 04:00:00 ┆ 3.0 │ │ … ┆ … ┆ … │ │ 20 ┆ 2001-01-01 20:00:00 ┆ 19.0 │ │ 21 ┆ 2001-01-01 21:00:00 ┆ 20.0 │ │ 22 ┆ 2001-01-01 22:00:00 ┆ 21.0 │ │ 23 ┆ 2001-01-01 23:00:00 ┆ 22.0 │ │ 24 ┆ 2001-01-02 00:00:00 ┆ 23.0 │ └───────┴─────────────────────┴──────────────────────┘