polars.Expr.sort_by#
- Expr.sort_by(
- by: IntoExpr | Iterable[IntoExpr],
- *more_by: IntoExpr,
- descending: bool | Sequence[bool] = False,
- nulls_last: bool | Sequence[bool] = False,
- multithreaded: bool = True,
- maintain_order: bool = False,
Sort this column by the ordering of other columns.
When used in a projection/selection context, the whole column is sorted. When used in a group by context, the groups are sorted.
- Parameters:
- by
Column(s) to sort by. Accepts expression input. Strings are parsed as column names.
- *more_by
Additional columns to sort by, specified as positional arguments.
- descending
Sort in descending order. When sorting by multiple columns, can be specified per column by passing a sequence of booleans.
- nulls_last
Place null values last; can specify a single boolean applying to all columns or a sequence of booleans for per-column control.
- multithreaded
Sort using multiple threads.
- maintain_order
Whether the order should be maintained if elements are equal.
Examples
Pass a single column name to sort by that column.
>>> df = pl.DataFrame( ... { ... "group": ["a", "a", "b", "b"], ... "value1": [1, 3, 4, 2], ... "value2": [8, 7, 6, 5], ... } ... ) >>> df.select(pl.col("group").sort_by("value1")) shape: (4, 1) ┌───────┐ │ group │ │ --- │ │ str │ ╞═══════╡ │ a │ │ b │ │ a │ │ b │ └───────┘
Sorting by expressions is also supported.
>>> df.select(pl.col("group").sort_by(pl.col("value1") + pl.col("value2"))) shape: (4, 1) ┌───────┐ │ group │ │ --- │ │ str │ ╞═══════╡ │ b │ │ a │ │ a │ │ b │ └───────┘
Sort by multiple columns by passing a list of columns.
>>> df.select(pl.col("group").sort_by(["value1", "value2"], descending=True)) shape: (4, 1) ┌───────┐ │ group │ │ --- │ │ str │ ╞═══════╡ │ b │ │ a │ │ b │ │ a │ └───────┘
Or use positional arguments to sort by multiple columns in the same way.
>>> df.select(pl.col("group").sort_by("value1", "value2")) shape: (4, 1) ┌───────┐ │ group │ │ --- │ │ str │ ╞═══════╡ │ a │ │ b │ │ a │ │ b │ └───────┘
When sorting in a group by context, the groups are sorted.
>>> df.group_by("group").agg( ... pl.col("value1").sort_by("value2") ... ) shape: (2, 2) ┌───────┬───────────┐ │ group ┆ value1 │ │ --- ┆ --- │ │ str ┆ list[i64] │ ╞═══════╪═══════════╡ │ a ┆ [3, 1] │ │ b ┆ [2, 4] │ └───────┴───────────┘
Take a single row from each group where a column attains its minimal value within that group.
>>> df.group_by("group").agg( ... pl.all().sort_by("value2").first() ... ) shape: (2, 3) ┌───────┬────────┬────────┐ │ group ┆ value1 ┆ value2 | │ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ i64 | ╞═══════╪════════╪════════╡ │ a ┆ 3 ┆ 7 | │ b ┆ 2 ┆ 5 | └───────┴────────┴────────┘