polars.Expr.arr.to_struct#
- Expr.arr.to_struct(fields: Sequence[str] | Callable[[int], str] | None = None) Expr [source]#
Convert the Series of type
Array
to a Series of typeStruct
.- Parameters:
- fields
If the name and number of the desired fields is known in advance a list of field names can be given, which will be assigned by index. Otherwise, to dynamically assign field names, a custom function can be used; if neither are set, fields will be
field_0, field_1 .. field_n
.
Examples
Convert array to struct with default field name assignment:
>>> df = pl.DataFrame( ... {"n": [[0, 1, 2], [3, 4, 5]]}, schema={"n": pl.Array(pl.Int8, 3)} ... ) >>> df.with_columns(struct=pl.col("n").arr.to_struct()) shape: (2, 2) ┌──────────────┬───────────┐ │ n ┆ struct │ │ --- ┆ --- │ │ array[i8, 3] ┆ struct[3] │ ╞══════════════╪═══════════╡ │ [0, 1, 2] ┆ {0,1,2} │ │ [3, 4, 5] ┆ {3,4,5} │ └──────────────┴───────────┘
Convert array to struct with field name assignment by function/index:
>>> df = pl.DataFrame( ... {"n": [[0, 1, 2], [3, 4, 5]]}, schema={"n": pl.Array(pl.Int8, 3)} ... ) >>> df.select(pl.col("n").arr.to_struct(fields=lambda idx: f"n{idx}")).rows( ... named=True ... ) [{'n': {'n0': 0, 'n1': 1, 'n2': 2}}, {'n': {'n0': 3, 'n1': 4, 'n2': 5}}]
Convert array to struct with field name assignment by index from a list of names:
>>> df.select(pl.col("n").arr.to_struct(fields=["c1", "c2", "c3"])).rows( ... named=True ... ) [{'n': {'c1': 0, 'c2': 1, 'c3': 2}}, {'n': {'c1': 3, 'c2': 4, 'c3': 5}}]