polars.Expr.ewm_mean_by#
- Expr.ewm_mean_by( ) Self [source]#
Calculate time-based exponentially weighted moving average.
Given observations \(x_1, x_2, \ldots, x_n\) at times \(t_1, t_2, \ldots, t_n\), the EWMA is calculated as
\[ \begin{align}\begin{aligned}y_0 &= x_0\\\alpha_i &= \exp(-\lambda(t_i - t_{i-1}))\\y_i &= \alpha_i x_i + (1 - \alpha_i) y_{i-1}; \quad i > 0\end{aligned}\end{align} \]where \(\lambda\) equals \(\ln(2) / \text{half_life}\).
- Parameters:
- by
Times to calculate average by. Should be
DateTime
,Date
,UInt64
,UInt32
,Int64
, orInt32
data type.- half_life
Unit over which observation decays to half its value.
Can be created either from a timedelta, or by using the following string language:
1ns (1 nanosecond)
1us (1 microsecond)
1ms (1 millisecond)
1s (1 second)
1m (1 minute)
1h (1 hour)
1d (1 day)
1w (1 week)
1i (1 index count)
Or combine them: “3d12h4m25s” # 3 days, 12 hours, 4 minutes, and 25 seconds
Note that
half_life
is treated as a constant duration - calendar durations such as months (or even days in the time-zone-aware case) are not supported, please express your duration in an approximately equivalent number of hours (e.g. ‘370h’ instead of ‘1mo’).- check_sorted
Check whether
by
column is sorted. Incorrectly setting this toFalse
will lead to incorrect output.Deprecated since version 0.20.27: Sortedness is now verified in a quick manner, you can safely remove this argument.
- Returns:
- Expr
Float32 if input is Float32, otherwise Float64.
Examples
>>> from datetime import date, timedelta >>> df = pl.DataFrame( ... { ... "values": [0, 1, 2, None, 4], ... "times": [ ... date(2020, 1, 1), ... date(2020, 1, 3), ... date(2020, 1, 10), ... date(2020, 1, 15), ... date(2020, 1, 17), ... ], ... } ... ).sort("times") >>> df.with_columns( ... result=pl.col("values").ewm_mean_by("times", half_life="4d"), ... ) shape: (5, 3) ┌────────┬────────────┬──────────┐ │ values ┆ times ┆ result │ │ --- ┆ --- ┆ --- │ │ i64 ┆ date ┆ f64 │ ╞════════╪════════════╪══════════╡ │ 0 ┆ 2020-01-01 ┆ 0.0 │ │ 1 ┆ 2020-01-03 ┆ 0.292893 │ │ 2 ┆ 2020-01-10 ┆ 1.492474 │ │ null ┆ 2020-01-15 ┆ null │ │ 4 ┆ 2020-01-17 ┆ 3.254508 │ └────────┴────────────┴──────────┘