polars.DataFrame.iter_columns#
- DataFrame.iter_columns() Iterator[Series] [source]#
Returns an iterator over the columns of this DataFrame.
- Yields:
- Series
Notes
Consider whether you can use
all()
instead. If you can, it will be more efficient.Examples
>>> df = pl.DataFrame( ... { ... "a": [1, 3, 5], ... "b": [2, 4, 6], ... } ... ) >>> [s.name for s in df.iter_columns()] ['a', 'b']
If you’re using this to modify a dataframe’s columns, e.g.
>>> # Do NOT do this >>> pl.DataFrame(column * 2 for column in df.iter_columns()) shape: (3, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 2 ┆ 4 │ │ 6 ┆ 8 │ │ 10 ┆ 12 │ └─────┴─────┘
then consider whether you can use
all()
instead:>>> df.select(pl.all() * 2) shape: (3, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 2 ┆ 4 │ │ 6 ┆ 8 │ │ 10 ┆ 12 │ └─────┴─────┘