polars.corr#
- polars.corr(
 - a: IntoExpr,
 - b: IntoExpr,
 - *,
 - method: CorrelationMethod = 'pearson',
 - ddof: int = 1,
 - propagate_nans: bool = False,
 Compute the Pearson’s or Spearman rank correlation correlation between two columns.
- Parameters:
 - a
 Column name or Expression.
- b
 Column name or Expression.
- ddof
 “Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where N represents the number of elements. By default ddof is 1.
- method{‘pearson’, ‘spearman’}
 Correlation method.
- propagate_nans
 If
TrueanyNaNencountered will lead toNaNin the output. Defaults toFalsewhereNaNare regarded as larger than any finite number and thus lead to the highest rank.
Examples
Pearson’s correlation:
>>> df = pl.DataFrame({"a": [1, 8, 3], "b": [4, 5, 2], "c": ["foo", "bar", "foo"]}) >>> df.select(pl.corr("a", "b")) shape: (1, 1) ┌──────────┐ │ a │ │ --- │ │ f64 │ ╞══════════╡ │ 0.544705 │ └──────────┘
Spearman rank correlation:
>>> df = pl.DataFrame({"a": [1, 8, 3], "b": [4, 5, 2], "c": ["foo", "bar", "foo"]}) >>> df.select(pl.corr("a", "b", method="spearman")) shape: (1, 1) ┌─────┐ │ a │ │ --- │ │ f64 │ ╞═════╡ │ 0.5 │ └─────┘