polars.testing.parametric.series#
- polars.testing.parametric.series(
- *,
- name: str | SearchStrategy[str] | None = None,
- dtype: PolarsDataType | None = None,
- size: int | None = None,
- min_size: int | None = 0,
- max_size: int | None = 10,
- strategy: SearchStrategy[object] | None = None,
- null_probability: float = 0.0,
- allow_infinities: bool = True,
- unique: bool = False,
- chunked: bool | None = None,
- allowed_dtypes: Collection[PolarsDataType] | PolarsDataType | None = None,
- excluded_dtypes: Collection[PolarsDataType] | PolarsDataType | None = None,
Hypothesis strategy for producing polars Series.
- Parameters:
- name{str, strategy}, optional
literal string or a strategy for strings (or None), passed to the Series constructor name-param.
- dtypePolarsDataType, optional
a valid polars DataType for the resulting series.
- sizeint, optional
if set, creates a Series of exactly this size (ignoring min_size/max_size params).
- min_sizeint, optional
if not passing an exact size, can set a minimum here (defaults to 0). no-op if
size
is set.- max_sizeint, optional
if not passing an exact size, can set a maximum value here (defaults to MAX_DATA_SIZE). no-op if
size
is set.- strategystrategy, optional
supports overriding the default strategy for the given dtype.
- null_probabilityfloat, optional
percentage chance (expressed between 0.0 => 1.0) that a generated value is None. this is applied independently of any None values generated by the underlying strategy.
- allow_infinitiesbool, optional
optionally disallow generation of +/-inf values for floating-point dtypes.
- uniquebool, optional
indicate whether Series values should all be distinct.
- chunkedbool, optional
ensure that Series with more than one element have
n_chunks
> 1. if omitted, chunking is applied at random.- allowed_dtypes{list,set}, optional
when automatically generating Series data, allow only these dtypes.
- excluded_dtypes{list,set}, optional
when automatically generating Series data, exclude these dtypes.
Notes
In actual usage this is deployed as a unit test decorator, providing a strategy that generates multiple Series with the given dtype/size characteristics for the unit test. While developing a strategy/test, it can also be useful to call
.example()
directly on a given strategy to see concrete instances of the generated data.Examples
>>> from polars.testing.parametric import series >>> from hypothesis import given
In normal usage, as a simple unit test:
>>> @given(s=series(null_probability=0.1)) ... def test_repr_is_valid_string(s: pl.Series) -> None: ... assert isinstance(repr(s), str)
Experimenting locally with a custom List dtype strategy:
>>> from polars.testing.parametric import create_list_strategy >>> s = series( ... strategy=create_list_strategy( ... inner_dtype=pl.Utf8, ... select_from=["xx", "yy", "zz"], ... ), ... min_size=2, ... max_size=4, ... ) >>> s.example() shape: (4,) Series: '' [list[str]] [ [] ["yy", "yy", "zz"] ["zz", "yy", "zz"] ["xx"] ]