polars.Expr.interpolate#
- Expr.interpolate(method: InterpolationMethod = 'linear') Self [source]#
Fill null values using interpolation.
- Parameters:
- method{‘linear’, ‘nearest’}
Interpolation method.
Examples
Fill null values using linear interpolation.
>>> df = pl.DataFrame( ... { ... "a": [1, None, 3], ... "b": [1.0, float("nan"), 3.0], ... } ... ) >>> df.select(pl.all().interpolate()) shape: (3, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ f64 ┆ f64 │ ╞═════╪═════╡ │ 1.0 ┆ 1.0 │ │ 2.0 ┆ NaN │ │ 3.0 ┆ 3.0 │ └─────┴─────┘
Fill null values using nearest interpolation.
>>> df.select(pl.all().interpolate("nearest")) shape: (3, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ f64 │ ╞═════╪═════╡ │ 1 ┆ 1.0 │ │ 3 ┆ NaN │ │ 3 ┆ 3.0 │ └─────┴─────┘
Regrid data to a new grid.
>>> df_original_grid = pl.DataFrame( ... { ... "grid_points": [1, 3, 10], ... "values": [2.0, 6.0, 20.0], ... } ... ) # Interpolate from this to the new grid >>> df_new_grid = pl.DataFrame({"grid_points": range(1, 11)}) >>> df_new_grid.join( ... df_original_grid, on="grid_points", how="left" ... ).with_columns(pl.col("values").interpolate()) shape: (10, 2) ┌─────────────┬────────┐ │ grid_points ┆ values │ │ --- ┆ --- │ │ i64 ┆ f64 │ ╞═════════════╪════════╡ │ 1 ┆ 2.0 │ │ 2 ┆ 4.0 │ │ 3 ┆ 6.0 │ │ 4 ┆ 8.0 │ │ … ┆ … │ │ 7 ┆ 14.0 │ │ 8 ┆ 16.0 │ │ 9 ┆ 18.0 │ │ 10 ┆ 20.0 │ └─────────────┴────────┘