polars.exclude#
- polars.exclude(
- columns: str | PolarsDataType | Collection[str] | Collection[PolarsDataType],
- *more_columns: str | PolarsDataType,
Represent all columns except for the given columns.
Syntactic sugar for
pl.all().exclude(columns)
.- Parameters:
- columns
The name or datatype of the column(s) to exclude. Accepts regular expression input. Regular expressions should start with
^
and end with$
.- *more_columns
Additional names or datatypes of columns to exclude, specified as positional arguments.
Examples
Exclude by column name(s):
>>> df = pl.DataFrame( ... { ... "aa": [1, 2, 3], ... "ba": ["a", "b", None], ... "cc": [None, 2.5, 1.5], ... } ... ) >>> df.select(pl.exclude("ba")) shape: (3, 2) ┌─────┬──────┐ │ aa ┆ cc │ │ --- ┆ --- │ │ i64 ┆ f64 │ ╞═════╪══════╡ │ 1 ┆ null │ │ 2 ┆ 2.5 │ │ 3 ┆ 1.5 │ └─────┴──────┘
Exclude by regex, e.g. removing all columns whose names end with the letter “a”:
>>> df.select(pl.exclude("^.*a$")) shape: (3, 1) ┌──────┐ │ cc │ │ --- │ │ f64 │ ╞══════╡ │ null │ │ 2.5 │ │ 1.5 │ └──────┘
Exclude by dtype(s), e.g. removing all columns of type Int64 or Float64:
>>> df.select(pl.exclude([pl.Int64, pl.Float64])) shape: (3, 1) ┌──────┐ │ ba │ │ --- │ │ str │ ╞══════╡ │ a │ │ b │ │ null │ └──────┘