polars.Expr.is_not_null#

Expr.is_not_null() Self[source]#

Returns a boolean Series indicating which values are not null.

Examples

>>> df = pl.DataFrame(
...     {
...         "a": [1, 2, None, 1, 5],
...         "b": [1.0, 2.0, float("nan"), 1.0, 5.0],
...     }
... )
>>> df.with_columns(
...     pl.all().is_not_null().name.suffix("_not_null")  # nan != null
... )
shape: (5, 4)
┌──────┬─────┬────────────┬────────────┐
│ a    ┆ b   ┆ a_not_null ┆ b_not_null │
│ ---  ┆ --- ┆ ---        ┆ ---        │
│ i64  ┆ f64 ┆ bool       ┆ bool       │
╞══════╪═════╪════════════╪════════════╡
│ 1    ┆ 1.0 ┆ true       ┆ true       │
│ 2    ┆ 2.0 ┆ true       ┆ true       │
│ null ┆ NaN ┆ false      ┆ true       │
│ 1    ┆ 1.0 ┆ true       ┆ true       │
│ 5    ┆ 5.0 ┆ true       ┆ true       │
└──────┴─────┴────────────┴────────────┘