polars.testing.parametric.columns#
- polars.testing.parametric.columns(
- cols: int | Sequence[str] | None = None,
- *,
- dtype: OneOrMoreDataTypes | None = None,
- min_cols: int | None = 0,
- max_cols: int | None = 8,
- unique: bool = False,
Define multiple columns for use with the @dataframes strategy.
Generate a fixed sequence of
column
objects suitable for passing to the @dataframes strategy, or using standalone (note that this function is not itself a strategy).- Parameters:
- cols{int, [str]}, optional
integer number of cols to create, or explicit list of column names. if omitted a random number of columns (between mincol and max_cols) are created.
- dtypePolarsDataType, optional
a single dtype for all cols, or list of dtypes (the same length as
cols
). if omitted, each generated column is assigned a random dtype.- min_colsint, optional
if not passing an exact size, can set a minimum here (defaults to 0).
- max_colsint, optional
if not passing an exact size, can set a maximum value here (defaults to MAX_COLS).
- uniquebool, optional
indicate if the values generated for these columns should be unique (per-column).
Notes
Additional control is available by creating a sequence of columns explicitly, using the
column
class (an especially useful option is to override the default data-generating strategy for a given col/dtype).Examples
>>> from polars.testing.parametric import columns, dataframes >>> from hypothesis import given >>> >>> @given(dataframes(columns(["x", "y", "z"], unique=True))) ... def test_unique_xyz(df: pl.DataFrame) -> None: ... assert_something(df)
Note, as ‘columns’ creates a list of native polars column definitions it can also be used independently of parametric/hypothesis tests:
>>> from string import punctuation >>> >>> def test_special_char_colname_init() -> None: ... df = pl.DataFrame(schema=[(c.name, c.dtype) for c in columns(punctuation)]) ... assert len(cols) == len(df.columns) ... assert 0 == len(df.rows()) ...