polars.int_ranges#
- polars.int_ranges(
 - start: int | IntoExprColumn,
 - end: int | IntoExprColumn,
 - step: int = 1,
 - *,
 - dtype: PolarsIntegerType = Int64,
 - eager: Literal[False] = False,
 - polars.int_ranges(
 - start: int | IntoExprColumn,
 - end: int | IntoExprColumn,
 - step: int = 1,
 - *,
 - dtype: PolarsIntegerType = Int64,
 - eager: Literal[True],
 - polars.int_ranges(
 - start: int | IntoExprColumn,
 - end: int | IntoExprColumn,
 - step: int = 1,
 - *,
 - dtype: PolarsIntegerType = Int64,
 - eager: bool,
 Generate a range of integers for each row of the input columns.
- Parameters:
 - start
 Lower bound of the range (inclusive).
- end
 Upper bound of the range (exclusive).
- step
 Step size of the range.
- dtype
 Integer data type of the ranges. Defaults to
Int64.- eager
 Evaluate immediately and return a
Series. If set toFalse(default), return an expression instead.
- Returns:
 - Expr or Series
 Column of data type
List(dtype).
See also
int_rangeGenerate a single range of integers.
Examples
>>> df = pl.DataFrame({"start": [1, -1], "end": [3, 2]}) >>> df.with_columns(pl.int_ranges("start", "end")) shape: (2, 3) ┌───────┬─────┬────────────┐ │ start ┆ end ┆ int_range │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ list[i64] │ ╞═══════╪═════╪════════════╡ │ 1 ┆ 3 ┆ [1, 2] │ │ -1 ┆ 2 ┆ [-1, 0, 1] │ └───────┴─────┴────────────┘