polars.Expr.rolling_map#
- Expr.rolling_map(
- function: Callable[[Series], Any],
- window_size: int,
- weights: list[float] | None = None,
- min_periods: int | None = None,
- *,
- center: bool = False,
Compute a custom rolling window function.
Warning
Computing custom functions is extremely slow. Use specialized rolling functions such as
Expr.rolling_sum()
if at all possible.- Parameters:
- function
Custom aggregation function.
- window_size
Size of the window. The window at a given row will include the row itself and the
window_size - 1
elements before it.- weights
A list of weights with the same length as the window that will be multiplied elementwise with the values in the window.
- min_periods
The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.
- center
Set the labels at the center of the window.
Examples
>>> from numpy import nansum >>> df = pl.DataFrame({"a": [11.0, 2.0, 9.0, float("nan"), 8.0]}) >>> df.select(pl.col("a").rolling_map(nansum, window_size=3)) shape: (5, 1) ┌──────┐ │ a │ │ --- │ │ f64 │ ╞══════╡ │ null │ │ null │ │ 22.0 │ │ 11.0 │ │ 17.0 │ └──────┘