Series#
This page gives an overview of all public Series methods.
- class polars.Series(
 - name: str | ArrayLike | None = None,
 - values: ArrayLike | None = None,
 - dtype: PolarsDataType | None = None,
 - *,
 - strict: bool = True,
 - nan_to_null: bool = False,
 - dtype_if_empty: PolarsDataType | None = None,
 A Series represents a single column in a polars DataFrame.
- Parameters:
 - namestr, default None
 Name of the Series. Will be used as a column name when used in a DataFrame. When not specified, name is set to an empty string.
- valuesArrayLike, default None
 One-dimensional data in various forms. Supported are: Sequence, Series, pyarrow Array, and numpy ndarray.
- dtypeDataType, default None
 Polars dtype of the Series data. If not specified, the dtype is inferred.
- strict
 Throw error on numeric overflow.
- nan_to_null
 In case a numpy array is used to create this Series, indicate how to deal with np.nan values. (This parameter is a no-op on non-numpy data).
- dtype_if_empty=dtype_if_emptyDataType, default None
 If no dtype is specified and values contains None, an empty list, or a list with only None values, set the Polars dtype of the Series data. If not specified, Float32 is used in those cases.
Examples
Constructing a Series by specifying name and values positionally:
>>> s = pl.Series("a", [1, 2, 3]) >>> s shape: (3,) Series: 'a' [i64] [ 1 2 3 ]
Notice that the dtype is automatically inferred as a polars Int64:
>>> s.dtype Int64
Constructing a Series with a specific dtype:
>>> s2 = pl.Series("a", [1, 2, 3], dtype=pl.Float32) >>> s2 shape: (3,) Series: 'a' [f32] [ 1.0 2.0 3.0 ]
It is possible to construct a Series with values as the first positional argument. This syntax considered an anti-pattern, but it can be useful in certain scenarios. You must specify any other arguments through keywords.
>>> s3 = pl.Series([1, 2, 3]) >>> s3 shape: (3,) Series: '' [i64] [ 1 2 3 ]
Methods:
Compute absolute values.
Rename the series.
Return whether all values in the column are
True.Return whether any of the values in the column are
True.Append a Series to this one.
Apply a custom/user-defined function (UDF) over elements in this Series.
Compute the element-wise value for the inverse cosine.
Compute the element-wise value for the inverse hyperbolic cosine.
Compute the element-wise value for the inverse sine.
Compute the element-wise value for the inverse hyperbolic sine.
Compute the element-wise value for the inverse tangent.
Compute the element-wise value for the inverse hyperbolic tangent.
Get the index of the maximal value.
Get the index of the minimal value.
Get the index values that would sort this Series.
Get index values where Boolean Series evaluate True.
Get unique index as Series.
Return the
ksmallest elements.Cast between data types.
Compute the cube root of the elements.
Rounds up to the nearest integer value.
Get the length of each individual chunk.
Create an empty copy of the current Series, with zero to 'n' elements.
Set values outside the given boundaries to the boundary value.
Clip (limit) the values in an array to a
maxboundary.Clip (limit) the values in an array to a
minboundary.Create a copy of this Series.
Compute the element-wise value for the cosine.
Compute the element-wise value for the hyperbolic cosine.
Compute the element-wise value for the cotangent.
Get an array with the cumulative max computed at every element.
Get an array with the cumulative min computed at every element.
Get an array with the cumulative product computed at every element.
Get an array with the cumulative sum computed at every element.
Get an array with the cumulative max computed at every element.
Get an array with the cumulative min computed at every element.
Get an array with the cumulative product computed at every element.
Get an array with the cumulative sum computed at every element.
Run an expression over a sliding window that increases
1slot every iteration.Bin continuous values into discrete categories.
Quick summary statistics of a Series.
Calculate the first discrete difference between shifted items.
Compute the dot/inner product between two Series.
Drop all floating point NaN values.
Drop all null values.
Computes the entropy.
eqMethod equivalent of operator expression
series == other.eq_missingMethod equivalent of equality operator
series == otherwhereNone == None.Check whether the Series is equal to another Series.
Return an estimation of the total (heap) allocated size of the Series.
Exponentially-weighted moving average.
Exponentially-weighted moving standard deviation.
Exponentially-weighted moving variance.
Compute the exponential, element-wise.
Explode a list Series.
Extend the memory backed by this Series with the values from another.
Extremely fast method for extending the Series with 'n' copies of a value.
Fill floating point NaN value with a fill value.
Fill null values using the specified value or strategy.
Filter elements by a boolean mask.
Rounds down to the nearest integer value.
Take values by index.
Take every nth value in the Series and return as new Series.
geMethod equivalent of operator expression
series >= other.Get the chunks of this Series as a list of Series.
gtMethod equivalent of operator expression
series > other.Return True if the Series has a validity bitmask.
Hash the Series.
Get the first
nelements.Bin values into buckets and count their occurrences.
Aggregate values into a list.
Fill null values using interpolation.
Get a boolean mask of the values that fall between the given start/end values.
Check if this Series is a Boolean.
Get mask of all duplicated values.
Check if the Series is empty.
Returns a boolean Series indicating which values are finite.
Return a boolean mask indicating the first occurrence of each distinct value.
Return a boolean mask indicating the first occurrence of each distinct value.
Check if this Series has floating point numbers.
Check if elements of this Series are in the other Series.
Returns a boolean Series indicating which values are infinite.
Check if this Series datatype is an integer (signed or unsigned).
Return a boolean mask indicating the last occurrence of each distinct value.
Return a boolean mask indicating the last occurrence of each distinct value.
Returns a boolean Series indicating which values are not NaN.
Returns a boolean Series indicating which values are not NaN.
Returns a boolean Series indicating which values are not null.
Returns a boolean Series indicating which values are null.
Check if this Series datatype is numeric.
Check if the Series is sorted.
Check if this Series datatype is temporal.
Get mask of all unique values.
Check if this Series datatype is a Utf8.
Return the Series as a scalar, or return the element at the given index.
Compute the kurtosis (Fisher or Pearson) of a dataset.
leMethod equivalent of operator expression
series <= other.Return the number of elements in this Series.
Get the first
nelements.Compute the logarithm to a given base.
Compute the base 10 logarithm of the input array, element-wise.
Compute the natural logarithm of the input array plus one, element-wise.
Return the lower bound of this Series' dtype as a unit Series.
ltMethod equivalent of operator expression
series < other.Replace values in the Series using a remapping dictionary.
Map a custom/user-defined function (UDF) over elements in this Series.
Get the maximum value in this Series.
Reduce this Series to the mean value.
Get the median of this Series.
Get the minimal value in this Series.
Compute the most occurring value(s).
Get the number of chunks that this Series contains.
Count the number of unique values in this Series.
Get maximum value, but propagate/poison encountered NaN values.
Get minimum value, but propagate/poison encountered NaN values.
neMethod equivalent of operator expression
series != other.ne_missingMethod equivalent of equality operator
series != otherwhereNone == None.Create a new Series filled with values from the given index.
Negate a boolean Series.
Count the null values in this Series.
Computes percentage change between values.
Get a boolean mask of the local maximum peaks.
Get a boolean mask of the local minimum peaks.
powRaise to the power of the given exponent.
Reduce this Series to the product value.
Bin continuous values into discrete categories based on their quantiles.
Get the quantile value of this Series.
Assign ranks to data, dealing with ties appropriately.
Create a single chunk of memory for this Series.
Reinterpret the underlying bits as a signed/unsigned integer.
Rename this Series.
Replace values according to the given mapping.
Reshape this Series to a flat Series or a Series of Lists.
Return Series in reverse order.
Get the lengths of runs of identical values.
Map values to run IDs.
Apply a custom rolling window function.
Compute a custom rolling window function.
Apply a rolling max (moving max) over the values in this array.
Apply a rolling mean (moving mean) over the values in this array.
Compute a rolling median.
Apply a rolling min (moving min) over the values in this array.
Compute a rolling quantile.
Compute a rolling skew.
Compute a rolling std dev.
Apply a rolling sum (moving sum) over the values in this array.
Compute a rolling variance.
Round underlying floating point data by
decimalsdigits.Round to a number of significant figures.
Sample from this Series.
Set values at the index locations.
Find indices where elements should be inserted to maintain order.
Check whether the Series is equal to another Series.
Set masked values.
Set values at the index locations.
Flags the Series as 'sorted'.
Shift values by the given number of indices.
Shift values by the given number of places and fill the resulting null values.
Shrink numeric columns to the minimal required datatype.
Shrink Series memory usage.
Shuffle the contents of this Series.
Compute the element-wise indication of the sign.
Compute the element-wise value for the sine.
Compute the element-wise value for the hyperbolic sine.
Compute the sample skewness of a data set.
Get a slice of this Series.
Sort this Series.
Compute the square root of the elements.
Get the standard deviation of this Series.
Reduce this Series to the sum value.
Get the last
nelements.Take values by index.
Take every nth value in the Series and return as new Series.
Compute the element-wise value for the tangent.
Compute the element-wise value for the hyperbolic tangent.
Get the underlying Arrow Array.
Get dummy/indicator variables.
Cast this Series to a DataFrame.
Convert Series to instantiatable string representation.
Convert this Series to a Python List.
Convert this Series to numpy.
Convert this Series to a pandas Series.
Cast to physical representation of the logical dtype.
Return the
klargest elements.Get unique elements in series.
Return a count of the unique values in the order of appearance.
Return the upper bound of this Series' dtype as a unit Series.
Count the occurrences of unique values.
Get variance of this Series.
Get a view into this Series data with a numpy array.
Take values from self or other based on the given mask.
- abs() Series[source]
 Compute absolute values.
Same as
abs(series).
- alias(name: str) Series[source]
 Rename the series.
- Parameters:
 - name
 The new name.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.alias("b") shape: (3,) Series: 'b' [i64] [ 1 2 3 ]
- all(*, ignore_nulls: Literal[True] = True) bool[source]
 - all(*, ignore_nulls: bool) bool | None
 Return whether all values in the column are
True.Only works on columns of data type
Boolean.- Parameters:
 - ignore_nulls
 Ignore null values (default).
If set to
False, Kleene logic is used to deal with nulls: if the column contains any null values and noTruevalues, the output isNone.
- Returns:
 - bool or None
 
Examples
>>> pl.Series([True, True]).all() True >>> pl.Series([False, True]).all() False >>> pl.Series([None, True]).all() True
Enable Kleene logic by setting
ignore_nulls=False.>>> pl.Series([None, True]).all(ignore_nulls=False) # Returns None
- any(*, ignore_nulls: Literal[True] = True) bool[source]
 - any(*, ignore_nulls: bool) bool | None
 Return whether any of the values in the column are
True.Only works on columns of data type
Boolean.- Parameters:
 - ignore_nulls
 Ignore null values (default).
If set to
False, Kleene logic is used to deal with nulls: if the column contains any null values and noTruevalues, the output isNone.
- Returns:
 - bool or None
 
Examples
>>> pl.Series([True, False]).any() True >>> pl.Series([False, False]).any() False >>> pl.Series([None, False]).any() False
Enable Kleene logic by setting
ignore_nulls=False.>>> pl.Series([None, False]).any(ignore_nulls=False) # Returns None
- append(other: Series, *, append_chunks: bool | None = None) Self[source]
 Append a Series to this one.
- Parameters:
 - other
 Series to append.
- append_chunks
 Deprecated since version 0.18.8: This argument will be removed and
appendwill change to always behave likeappend_chunks=True(the previous default). For the behavior ofappend_chunks=False, useSeries.extend.If set to
Truethe append operation will add the chunks fromotherto self. This is super cheap.If set to
Falsethe append operation will do the same asDataFrame.extendwhich extends the memory backed by thisSerieswith the values fromother.Different from
append chunks,extendappends the data fromotherto the underlying memory locations and thus may cause a reallocation (which are expensive).If this does not cause a reallocation, the resulting data structure will not have any extra chunks and thus will yield faster queries.
Prefer
extendoverappend_chunkswhen you want to do a query after a single append. For instance during online operations where you addnrows and rerun a query.Prefer
append_chunksoverextendwhen you want to append many times before doing a query. For instance when you read in multiple files and when to store them in a singleSeries. In the latter case, finish the sequence ofappend_chunksoperations with arechunk.
Warning
This method modifies the series in-place. The series is returned for convenience only.
See also
Examples
>>> a = pl.Series("a", [1, 2, 3]) >>> b = pl.Series("b", [4, 5]) >>> a.append(b) shape: (5,) Series: 'a' [i64] [ 1 2 3 4 5 ]
The resulting series will consist of multiple chunks.
>>> a.n_chunks() 2
- apply(
 - function: Callable[[Any], Any],
 - return_dtype: PolarsDataType | None = None,
 - *,
 - skip_nulls: bool = True,
 Apply a custom/user-defined function (UDF) over elements in this Series.
Deprecated since version 0.19.0: This method has been renamed to
Series.map_elements().- Parameters:
 - function
 Custom function or lambda.
- return_dtype
 Output datatype. If none is given, the same datatype as this Series will be used.
- skip_nulls
 Nulls will be skipped and not passed to the python function. This is faster because python can be skipped and because we call more specialized functions.
- arccos() Series[source]
 Compute the element-wise value for the inverse cosine.
Examples
>>> s = pl.Series("a", [1.0, 0.0, -1.0]) >>> s.arccos() shape: (3,) Series: 'a' [f64] [ 0.0 1.570796 3.141593 ]
- arccosh() Series[source]
 Compute the element-wise value for the inverse hyperbolic cosine.
Examples
>>> s = pl.Series("a", [5.0, 1.0, 0.0, -1.0]) >>> s.arccosh() shape: (4,) Series: 'a' [f64] [ 2.292432 0.0 NaN NaN ]
- arcsin() Series[source]
 Compute the element-wise value for the inverse sine.
Examples
>>> s = pl.Series("a", [1.0, 0.0, -1.0]) >>> s.arcsin() shape: (3,) Series: 'a' [f64] [ 1.570796 0.0 -1.570796 ]
- arcsinh() Series[source]
 Compute the element-wise value for the inverse hyperbolic sine.
Examples
>>> s = pl.Series("a", [1.0, 0.0, -1.0]) >>> s.arcsinh() shape: (3,) Series: 'a' [f64] [ 0.881374 0.0 -0.881374 ]
- arctan() Series[source]
 Compute the element-wise value for the inverse tangent.
Examples
>>> s = pl.Series("a", [1.0, 0.0, -1.0]) >>> s.arctan() shape: (3,) Series: 'a' [f64] [ 0.785398 0.0 -0.785398 ]
- arctanh() Series[source]
 Compute the element-wise value for the inverse hyperbolic tangent.
Examples
>>> s = pl.Series("a", [2.0, 1.0, 0.5, 0.0, -0.5, -1.0, -1.1]) >>> s.arctanh() shape: (7,) Series: 'a' [f64] [ NaN inf 0.549306 0.0 -0.549306 -inf NaN ]
- arg_max() int | None[source]
 Get the index of the maximal value.
- Returns:
 - int
 
Examples
>>> s = pl.Series("a", [3, 2, 1]) >>> s.arg_max() 0
- arg_min() int | None[source]
 Get the index of the minimal value.
- Returns:
 - int
 
Examples
>>> s = pl.Series("a", [3, 2, 1]) >>> s.arg_min() 2
- arg_sort( ) Series[source]
 Get the index values that would sort this Series.
- Parameters:
 - descending
 Sort in descending order.
- nulls_last
 Place null values last instead of first.
Examples
>>> s = pl.Series("a", [5, 3, 4, 1, 2]) >>> s.arg_sort() shape: (5,) Series: 'a' [u32] [ 3 4 1 2 0 ]
- arg_true() Series[source]
 Get index values where Boolean Series evaluate True.
- Returns:
 - Series
 Series of data type
UInt32.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> (s == 2).arg_true() shape: (1,) Series: 'a' [u32] [ 1 ]
- arg_unique() Series[source]
 Get unique index as Series.
- Returns:
 - Series
 
Examples
>>> s = pl.Series("a", [1, 2, 2, 3]) >>> s.arg_unique() shape: (3,) Series: 'a' [u32] [ 0 1 3 ]
- bottom_k(k: int | IntoExprColumn = 5) Series[source]
 Return the
ksmallest elements.This has time complexity:
\[\begin{split}O(n + k \\log{}n - \frac{k}{2})\end{split}\]- Parameters:
 - k
 Number of elements to return.
See also
Examples
>>> s = pl.Series("a", [2, 5, 1, 4, 3]) >>> s.bottom_k(3) shape: (3,) Series: 'a' [i64] [ 1 2 3 ]
- cast( ) Self[source]
 Cast between data types.
- Parameters:
 - dtype
 DataType to cast to.
- strict
 Throw an error if a cast could not be done (for instance, due to an overflow).
Examples
>>> s = pl.Series("a", [True, False, True]) >>> s shape: (3,) Series: 'a' [bool] [ true false true ]
>>> s.cast(pl.UInt32) shape: (3,) Series: 'a' [u32] [ 1 0 1 ]
- cbrt() Series[source]
 Compute the cube root of the elements.
Optimization for
>>> pl.Series([1, 2]) ** (1.0 / 3) shape: (2,) Series: '' [f64] [ 1.0 1.259921 ]
- ceil() Series[source]
 Rounds up to the nearest integer value.
Only works on floating point Series.
Examples
>>> s = pl.Series("a", [1.12345, 2.56789, 3.901234]) >>> s.ceil() shape: (3,) Series: 'a' [f64] [ 2.0 3.0 4.0 ]
- chunk_lengths() list[int][source]
 Get the length of each individual chunk.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s2 = pl.Series("a", [4, 5, 6])
Concatenate Series with rechunk = True
>>> pl.concat([s, s2]).chunk_lengths() [6]
Concatenate Series with rechunk = False
>>> pl.concat([s, s2], rechunk=False).chunk_lengths() [3, 3]
- clear(n: int = 0) Series[source]
 Create an empty copy of the current Series, with zero to ‘n’ elements.
The copy has an identical name/dtype, but no data.
- Parameters:
 - n
 Number of (empty) elements to return in the cleared frame.
See also
cloneCheap deepcopy/clone.
Examples
>>> s = pl.Series("a", [None, True, False]) >>> s.clear() shape: (0,) Series: 'a' [bool] [ ]
>>> s.clear(n=2) shape: (2,) Series: 'a' [bool] [ null null ]
- clip(
 - lower_bound: NumericLiteral | TemporalLiteral | IntoExprColumn | None = None,
 - upper_bound: NumericLiteral | TemporalLiteral | IntoExprColumn | None = None,
 Set values outside the given boundaries to the boundary value.
- Parameters:
 - lower_bound
 Lower bound. Accepts expression input. Non-expression inputs are parsed as literals. If set to
None(default), no lower bound is applied.- upper_bound
 Upper bound. Accepts expression input. Non-expression inputs are parsed as literals. If set to
None(default), no upper bound is applied.
See also
Notes
This method only works for numeric and temporal columns. To clip other data types, consider writing a
when-then-otherwiseexpression. Seewhen().Examples
Specifying both a lower and upper bound:
>>> s = pl.Series([-50, 5, 50, None]) >>> s.clip(1, 10) shape: (4,) Series: '' [i64] [ 1 5 10 null ]
Specifying only a single bound:
>>> s.clip(upper_bound=10) shape: (4,) Series: '' [i64] [ -50 5 10 null ]
- clip_max(
 - upper_bound: NumericLiteral | TemporalLiteral | IntoExprColumn,
 Clip (limit) the values in an array to a
maxboundary.Deprecated since version 0.19.12: Use
clip()instead.- Parameters:
 - upper_bound
 Upper bound.
- clip_min(
 - lower_bound: NumericLiteral | TemporalLiteral | IntoExprColumn,
 Clip (limit) the values in an array to a
minboundary.Deprecated since version 0.19.12: Use
clip()instead.- Parameters:
 - lower_bound
 Lower bound.
- clone() Self[source]
 Create a copy of this Series.
This is a cheap operation that does not copy data.
See also
clearCreate an empty copy of the current Series, with identical schema but no data.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.clone() shape: (3,) Series: 'a' [i64] [ 1 2 3 ]
- cos() Series[source]
 Compute the element-wise value for the cosine.
Examples
>>> import math >>> s = pl.Series("a", [0.0, math.pi / 2.0, math.pi]) >>> s.cos() shape: (3,) Series: 'a' [f64] [ 1.0 6.1232e-17 -1.0 ]
- cosh() Series[source]
 Compute the element-wise value for the hyperbolic cosine.
Examples
>>> s = pl.Series("a", [1.0, 0.0, -1.0]) >>> s.cosh() shape: (3,) Series: 'a' [f64] [ 1.543081 1.0 1.543081 ]
- cot() Series[source]
 Compute the element-wise value for the cotangent.
Examples
>>> import math >>> s = pl.Series("a", [0.0, math.pi / 2.0, math.pi]) >>> s.cot() shape: (3,) Series: 'a' [f64] [ inf 6.1232e-17 -8.1656e15 ]
- cum_max(*, reverse: bool = False) Series[source]
 Get an array with the cumulative max computed at every element.
- Parameters:
 - reverse
 reverse the operation.
Examples
>>> s = pl.Series("s", [3, 5, 1]) >>> s.cum_max() shape: (3,) Series: 's' [i64] [ 3 5 5 ]
- cum_min(*, reverse: bool = False) Series[source]
 Get an array with the cumulative min computed at every element.
- Parameters:
 - reverse
 reverse the operation.
Examples
>>> s = pl.Series("s", [1, 2, 3]) >>> s.cum_min() shape: (3,) Series: 's' [i64] [ 1 1 1 ]
- cum_prod(*, reverse: bool = False) Series[source]
 Get an array with the cumulative product computed at every element.
- Parameters:
 - reverse
 reverse the operation.
Notes
Dtypes in {Int8, UInt8, Int16, UInt16} are cast to Int64 before summing to prevent overflow issues.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.cum_prod() shape: (3,) Series: 'a' [i64] [ 1 2 6 ]
- cum_sum(*, reverse: bool = False) Series[source]
 Get an array with the cumulative sum computed at every element.
- Parameters:
 - reverse
 reverse the operation.
Notes
Dtypes in {Int8, UInt8, Int16, UInt16} are cast to Int64 before summing to prevent overflow issues.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.cum_sum() shape: (3,) Series: 'a' [i64] [ 1 3 6 ]
- cummax(*, reverse: bool = False) Series[source]
 Get an array with the cumulative max computed at every element.
Deprecated since version 0.19.14: This method has been renamed to
cum_max().- Parameters:
 - reverse
 reverse the operation.
- cummin(*, reverse: bool = False) Series[source]
 Get an array with the cumulative min computed at every element.
Deprecated since version 0.19.14: This method has been renamed to
cum_min().- Parameters:
 - reverse
 reverse the operation.
- cumprod(*, reverse: bool = False) Series[source]
 Get an array with the cumulative product computed at every element.
Deprecated since version 0.19.14: This method has been renamed to
cum_prod().- Parameters:
 - reverse
 reverse the operation.
- cumsum(*, reverse: bool = False) Series[source]
 Get an array with the cumulative sum computed at every element.
Deprecated since version 0.19.14: This method has been renamed to
cum_sum().- Parameters:
 - reverse
 reverse the operation.
- cumulative_eval( ) Series[source]
 Run an expression over a sliding window that increases
1slot every iteration.- Parameters:
 - expr
 Expression to evaluate
- min_periods
 Number of valid values there should be in the window before the expression is evaluated. valid values =
length - null_count- parallel
 Run in parallel. Don’t do this in a group by or another operation that already has much parallelization.
Warning
This functionality is experimental and may change without it being considered a breaking change.
This can be really slow as it can have
O(n^2)complexity. Don’t use this for operations that visit all elements.Examples
>>> s = pl.Series("values", [1, 2, 3, 4, 5]) >>> s.cumulative_eval(pl.element().first() - pl.element().last() ** 2) shape: (5,) Series: 'values' [f64] [ 0.0 -3.0 -8.0 -15.0 -24.0 ]
- cut(
 - breaks: Sequence[float],
 - labels: Sequence[str] | None = None,
 - break_point_label: str = 'break_point',
 - category_label: str = 'category',
 - *,
 - left_closed: bool = False,
 - include_breaks: bool = False,
 - as_series: Literal[True] = True,
 - cut(
 - breaks: Sequence[float],
 - labels: Sequence[str] | None = None,
 - break_point_label: str = 'break_point',
 - category_label: str = 'category',
 - *,
 - left_closed: bool = False,
 - include_breaks: bool = False,
 - as_series: Literal[False],
 - cut(
 - breaks: Sequence[float],
 - labels: Sequence[str] | None = None,
 - break_point_label: str = 'break_point',
 - category_label: str = 'category',
 - *,
 - left_closed: bool = False,
 - include_breaks: bool = False,
 - as_series: bool,
 Bin continuous values into discrete categories.
- Parameters:
 - breaks
 List of unique cut points.
- labels
 Names of the categories. The number of labels must be equal to the number of cut points plus one.
- break_point_label
 Name of the breakpoint column. Only used if
include_breaksis set toTrue.Deprecated since version 0.19.0: This parameter will be removed. Use
Series.struct.rename_fieldsto rename the field instead.- category_label
 Name of the category column. Only used if
include_breaksis set toTrue.Deprecated since version 0.19.0: This parameter will be removed. Use
Series.struct.rename_fieldsto rename the field instead.- left_closed
 Set the intervals to be left-closed instead of right-closed.
- include_breaks
 Include a column with the right endpoint of the bin each observation falls in. This will change the data type of the output from a
Categoricalto aStruct.- as_series
 If set to
False, return a DataFrame containing the original values, the breakpoints, and the categories.Deprecated since version 0.19.0: This parameter will be removed. The same behavior can be achieved by setting
include_breaks=True, unnesting the resulting struct Series, and adding the result to the original Series.
- Returns:
 - Series
 Series of data type
Categoricalifinclude_breaksis set toFalse(default), otherwise a Series of data typeStruct.
See also
Examples
Divide the column into three categories.
>>> s = pl.Series("foo", [-2, -1, 0, 1, 2]) >>> s.cut([-1, 1], labels=["a", "b", "c"]) shape: (5,) Series: 'foo' [cat] [ "a" "a" "b" "b" "c" ]
Create a DataFrame with the breakpoint and category for each value.
>>> cut = s.cut([-1, 1], include_breaks=True).alias("cut") >>> s.to_frame().with_columns(cut).unnest("cut") shape: (5, 3) ┌─────┬─────────────┬────────────┐ │ foo ┆ break_point ┆ category │ │ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ cat │ ╞═════╪═════════════╪════════════╡ │ -2 ┆ -1.0 ┆ (-inf, -1] │ │ -1 ┆ -1.0 ┆ (-inf, -1] │ │ 0 ┆ 1.0 ┆ (-1, 1] │ │ 1 ┆ 1.0 ┆ (-1, 1] │ │ 2 ┆ inf ┆ (1, inf] │ └─────┴─────────────┴────────────┘
- describe( ) DataFrame[source]
 Quick summary statistics of a Series.
Series with mixed datatypes will return summary statistics for the datatype of the first value.
- Parameters:
 - percentiles
 One or more percentiles to include in the summary statistics (if the Series has a numeric dtype). All values must be in the range
[0, 1].
- Returns:
 - DataFrame
 Mapping with summary statistics of a Series.
Notes
The median is included by default as the 50% percentile.
Examples
>>> series_num = pl.Series([1, 2, 3, 4, 5]) >>> series_num.describe() shape: (9, 2) ┌────────────┬──────────┐ │ statistic ┆ value │ │ --- ┆ --- │ │ str ┆ f64 │ ╞════════════╪══════════╡ │ count ┆ 5.0 │ │ null_count ┆ 0.0 │ │ mean ┆ 3.0 │ │ std ┆ 1.581139 │ │ min ┆ 1.0 │ │ 25% ┆ 2.0 │ │ 50% ┆ 3.0 │ │ 75% ┆ 4.0 │ │ max ┆ 5.0 │ └────────────┴──────────┘
>>> series_str = pl.Series(["a", "a", None, "b", "c"]) >>> series_str.describe() shape: (3, 2) ┌────────────┬───────┐ │ statistic ┆ value │ │ --- ┆ --- │ │ str ┆ i64 │ ╞════════════╪═══════╡ │ count ┆ 5 │ │ null_count ┆ 1 │ │ unique ┆ 4 │ └────────────┴───────┘
- diff(n: int = 1, null_behavior: NullBehavior = 'ignore') Series[source]
 Calculate the first discrete difference between shifted items.
- Parameters:
 - n
 Number of slots to shift.
- null_behavior{‘ignore’, ‘drop’}
 How to handle null values.
Examples
>>> s = pl.Series("s", values=[20, 10, 30, 25, 35], dtype=pl.Int8) >>> s.diff() shape: (5,) Series: 's' [i8] [ null -10 20 -5 10 ]
>>> s.diff(n=2) shape: (5,) Series: 's' [i8] [ null null 10 15 5 ]
>>> s.diff(n=2, null_behavior="drop") shape: (3,) Series: 's' [i8] [ 10 15 5 ]
- dot(
 - other: Series | Sequence[Any] | Array | ChunkedArray | ndarray | Series | DatetimeIndex,
 Compute the dot/inner product between two Series.
- Parameters:
 - other
 Series (or array) to compute dot product with.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s2 = pl.Series("b", [4.0, 5.0, 6.0]) >>> s.dot(s2) 32.0
- drop_nans() Series[source]
 Drop all floating point NaN values.
The original order of the remaining elements is preserved.
See also
Notes
A NaN value is not the same as a null value. To drop null values, use
drop_nulls().Examples
>>> s = pl.Series([1.0, None, 3.0, float("nan")]) >>> s.drop_nans() shape: (3,) Series: '' [f64] [ 1.0 null 3.0 ]
- drop_nulls() Series[source]
 Drop all null values.
The original order of the remaining elements is preserved.
See also
Notes
A null value is not the same as a NaN value. To drop NaN values, use
drop_nans().Examples
>>> s = pl.Series([1.0, None, 3.0, float("nan")]) >>> s.drop_nulls() shape: (3,) Series: '' [f64] [ 1.0 3.0 NaN ]
- entropy( ) float | None[source]
 Computes the entropy.
Uses the formula
-sum(pk * log(pk)wherepkare discrete probabilities.- Parameters:
 - base
 Given base, defaults to
e- normalize
 Normalize pk if it doesn’t sum to 1.
Examples
>>> a = pl.Series([0.99, 0.005, 0.005]) >>> a.entropy(normalize=True) 0.06293300616044681 >>> b = pl.Series([0.65, 0.10, 0.25]) >>> b.entropy(normalize=True) 0.8568409950394724
- eq(other: Any) Self | Expr[source]
 Method equivalent of operator expression
series == other.
- eq_missing(other: Any) Self[source]
 - eq_missing(other: Expr) Expr
 Method equivalent of equality operator
series == otherwhereNone == None.This differs from the standard
newhere null values are propagated.- Parameters:
 - other
 A literal or expression value to compare with.
See also
ne_missingeq
Examples
>>> s1 = pl.Series("a", [333, 200, None]) >>> s2 = pl.Series("a", [100, 200, None]) >>> s1.eq(s2) shape: (3,) Series: 'a' [bool] [ false true null ] >>> s1.eq_missing(s2) shape: (3,) Series: 'a' [bool] [ false true true ]
- equals( ) bool[source]
 Check whether the Series is equal to another Series.
- Parameters:
 - other
 Series to compare with.
- null_equal
 Consider null values as equal.
- strict
 Don’t allow different numerical dtypes, e.g. comparing
pl.UInt32with apl.Int64will returnFalse.
See also
assert_series_equal
Examples
>>> s1 = pl.Series("a", [1, 2, 3]) >>> s2 = pl.Series("b", [4, 5, 6]) >>> s1.equals(s1) True >>> s1.equals(s2) False
- estimated_size(unit: SizeUnit = 'b') int | float[source]
 Return an estimation of the total (heap) allocated size of the Series.
Estimated size is given in the specified unit (bytes by default).
This estimation is the sum of the size of its buffers, validity, including nested arrays. Multiple arrays may share buffers and bitmaps. Therefore, the size of 2 arrays is not the sum of the sizes computed from this function. In particular, [
StructArray]’s size is an upper bound.When an array is sliced, its allocated size remains constant because the buffer unchanged. However, this function will yield a smaller number. This is because this function returns the visible size of the buffer, not its total capacity.
FFI buffers are included in this estimation.
- Parameters:
 - unit{‘b’, ‘kb’, ‘mb’, ‘gb’, ‘tb’}
 Scale the returned size to the given unit.
Examples
>>> s = pl.Series("values", list(range(1_000_000)), dtype=pl.UInt32) >>> s.estimated_size() 4000000 >>> s.estimated_size("mb") 3.814697265625
- ewm_mean(
 - com: float | None = None,
 - span: float | None = None,
 - half_life: float | None = None,
 - alpha: float | None = None,
 - *,
 - adjust: bool = True,
 - min_periods: int = 1,
 - ignore_nulls: bool = True,
 Exponentially-weighted moving average.
- Parameters:
 - com
 Specify decay in terms of center of mass, \(\gamma\), with
\[\alpha = \frac{1}{1 + \gamma} \; \forall \; \gamma \geq 0\]- span
 Specify decay in terms of span, \(\theta\), with
\[\alpha = \frac{2}{\theta + 1} \; \forall \; \theta \geq 1\]- half_life
 Specify decay in terms of half-life, \(\lambda\), with
\[\alpha = 1 - \exp \left\{ \frac{ -\ln(2) }{ \lambda } \right\} \; \forall \; \lambda > 0\]- alpha
 Specify smoothing factor alpha directly, \(0 < \alpha \leq 1\).
- adjust
 Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings
When
adjust=Truethe EW function is calculated using weights \(w_i = (1 - \alpha)^i\)When
adjust=Falsethe EW function is calculated recursively by\[\begin{split}y_0 &= x_0 \\ y_t &= (1 - \alpha)y_{t - 1} + \alpha x_t\end{split}\]
- min_periods
 Minimum number of observations in window required to have a value (otherwise result is null).
- ignore_nulls
 Ignore missing values when calculating weights.
When
ignore_nulls=False(default), weights are based on absolute positions. For example, the weights of \(x_0\) and \(x_2\) used in calculating the final weighted average of [\(x_0\), None, \(x_2\)] are \((1-\alpha)^2\) and \(1\) ifadjust=True, and \((1-\alpha)^2\) and \(\alpha\) ifadjust=False.When
ignore_nulls=True, weights are based on relative positions. For example, the weights of \(x_0\) and \(x_2\) used in calculating the final weighted average of [\(x_0\), None, \(x_2\)] are \(1-\alpha\) and \(1\) ifadjust=True, and \(1-\alpha\) and \(\alpha\) ifadjust=False.
Examples
>>> s = pl.Series([1, 2, 3]) >>> s.ewm_mean(com=1) shape: (3,) Series: '' [f64] [ 1.0 1.666667 2.428571 ]
- ewm_std(
 - com: float | None = None,
 - span: float | None = None,
 - half_life: float | None = None,
 - alpha: float | None = None,
 - *,
 - adjust: bool = True,
 - bias: bool = False,
 - min_periods: int = 1,
 - ignore_nulls: bool = True,
 Exponentially-weighted moving standard deviation.
- Parameters:
 - com
 Specify decay in terms of center of mass, \(\gamma\), with
\[\alpha = \frac{1}{1 + \gamma} \; \forall \; \gamma \geq 0\]- span
 Specify decay in terms of span, \(\theta\), with
\[\alpha = \frac{2}{\theta + 1} \; \forall \; \theta \geq 1\]- half_life
 Specify decay in terms of half-life, \(\lambda\), with
\[\alpha = 1 - \exp \left\{ \frac{ -\ln(2) }{ \lambda } \right\} \; \forall \; \lambda > 0\]- alpha
 Specify smoothing factor alpha directly, \(0 < \alpha \leq 1\).
- adjust
 Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings
When
adjust=Truethe EW function is calculated using weights \(w_i = (1 - \alpha)^i\)When
adjust=Falsethe EW function is calculated recursively by\[\begin{split}y_0 &= x_0 \\ y_t &= (1 - \alpha)y_{t - 1} + \alpha x_t\end{split}\]
- bias
 When
bias=False, apply a correction to make the estimate statistically unbiased.- min_periods
 Minimum number of observations in window required to have a value (otherwise result is null).
- ignore_nulls
 Ignore missing values when calculating weights.
When
ignore_nulls=False(default), weights are based on absolute positions. For example, the weights of \(x_0\) and \(x_2\) used in calculating the final weighted average of [\(x_0\), None, \(x_2\)] are \((1-\alpha)^2\) and \(1\) ifadjust=True, and \((1-\alpha)^2\) and \(\alpha\) ifadjust=False.When
ignore_nulls=True, weights are based on relative positions. For example, the weights of \(x_0\) and \(x_2\) used in calculating the final weighted average of [\(x_0\), None, \(x_2\)] are \(1-\alpha\) and \(1\) ifadjust=True, and \(1-\alpha\) and \(\alpha\) ifadjust=False.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.ewm_std(com=1) shape: (3,) Series: 'a' [f64] [ 0.0 0.707107 0.963624 ]
- ewm_var(
 - com: float | None = None,
 - span: float | None = None,
 - half_life: float | None = None,
 - alpha: float | None = None,
 - *,
 - adjust: bool = True,
 - bias: bool = False,
 - min_periods: int = 1,
 - ignore_nulls: bool = True,
 Exponentially-weighted moving variance.
- Parameters:
 - com
 Specify decay in terms of center of mass, \(\gamma\), with
\[\alpha = \frac{1}{1 + \gamma} \; \forall \; \gamma \geq 0\]- span
 Specify decay in terms of span, \(\theta\), with
\[\alpha = \frac{2}{\theta + 1} \; \forall \; \theta \geq 1\]- half_life
 Specify decay in terms of half-life, \(\lambda\), with
\[\alpha = 1 - \exp \left\{ \frac{ -\ln(2) }{ \lambda } \right\} \; \forall \; \lambda > 0\]- alpha
 Specify smoothing factor alpha directly, \(0 < \alpha \leq 1\).
- adjust
 Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings
When
adjust=Truethe EW function is calculated using weights \(w_i = (1 - \alpha)^i\)When
adjust=Falsethe EW function is calculated recursively by\[\begin{split}y_0 &= x_0 \\ y_t &= (1 - \alpha)y_{t - 1} + \alpha x_t\end{split}\]
- bias
 When
bias=False, apply a correction to make the estimate statistically unbiased.- min_periods
 Minimum number of observations in window required to have a value (otherwise result is null).
- ignore_nulls
 Ignore missing values when calculating weights.
When
ignore_nulls=False(default), weights are based on absolute positions. For example, the weights of \(x_0\) and \(x_2\) used in calculating the final weighted average of [\(x_0\), None, \(x_2\)] are \((1-\alpha)^2\) and \(1\) ifadjust=True, and \((1-\alpha)^2\) and \(\alpha\) ifadjust=False.When
ignore_nulls=True, weights are based on relative positions. For example, the weights of \(x_0\) and \(x_2\) used in calculating the final weighted average of [\(x_0\), None, \(x_2\)] are \(1-\alpha\) and \(1\) ifadjust=True, and \(1-\alpha\) and \(\alpha\) ifadjust=False.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.ewm_var(com=1) shape: (3,) Series: 'a' [f64] [ 0.0 0.5 0.928571 ]
- exp() Series[source]
 Compute the exponential, element-wise.
- explode() Series[source]
 Explode a list Series.
This means that every item is expanded to a new row.
- Returns:
 - Series
 Series with the data type of the list elements.
See also
Series.list.explodeExplode a list column.
Series.str.explodeExplode a string column.
- extend(other: Series) Self[source]
 Extend the memory backed by this Series with the values from another.
Different from
append, which adds the chunks fromotherto the chunks of this series,extendappends the data fromotherto the underlying memory locations and thus may cause a reallocation (which is expensive).If this does
notcause a reallocation, the resulting data structure will not have any extra chunks and thus will yield faster queries.Prefer
extendoverappendwhen you want to do a query after a single append. For instance, during online operations where you addnrows and rerun a query.Prefer
appendoverextendwhen you want to append many times before doing a query. For instance, when you read in multiple files and want to store them in a singleSeries. In the latter case, finish the sequence ofappendoperations with arechunk.- Parameters:
 - other
 Series to extend the series with.
Warning
This method modifies the series in-place. The series is returned for convenience only.
See also
Examples
>>> a = pl.Series("a", [1, 2, 3]) >>> b = pl.Series("b", [4, 5]) >>> a.extend(b) shape: (5,) Series: 'a' [i64] [ 1 2 3 4 5 ]
The resulting series will consist of a single chunk.
>>> a.n_chunks() 1
- extend_constant(value: PythonLiteral | None, n: int) Series[source]
 Extremely fast method for extending the Series with ‘n’ copies of a value.
- Parameters:
 - value
 A constant literal value (not an expression) with which to extend the Series; can pass None to extend with nulls.
- n
 The number of additional values that will be added.
Examples
>>> s = pl.Series([1, 2, 3]) >>> s.extend_constant(99, n=2) shape: (5,) Series: '' [i64] [ 1 2 3 99 99 ]
- fill_nan(value: int | float | Expr | None) Series[source]
 Fill floating point NaN value with a fill value.
- Parameters:
 - value
 Value used to fill NaN values.
Examples
>>> s = pl.Series("a", [1, 2, 3, float("nan")]) >>> s.fill_nan(0) shape: (4,) Series: 'a' [f64] [ 1.0 2.0 3.0 0.0 ]
- fill_null( ) Series[source]
 Fill null values using the specified value or strategy.
- Parameters:
 - value
 Value used to fill null values.
- strategy{None, ‘forward’, ‘backward’, ‘min’, ‘max’, ‘mean’, ‘zero’, ‘one’}
 Strategy used to fill null values.
- limit
 Number of consecutive null values to fill when using the ‘forward’ or ‘backward’ strategy.
Examples
>>> s = pl.Series("a", [1, 2, 3, None]) >>> s.fill_null(strategy="forward") shape: (4,) Series: 'a' [i64] [ 1 2 3 3 ] >>> s.fill_null(strategy="min") shape: (4,) Series: 'a' [i64] [ 1 2 3 1 ] >>> s = pl.Series("b", ["x", None, "z"]) >>> s.fill_null(pl.lit("")) shape: (3,) Series: 'b' [str] [ "x" "" "z" ]
- filter(predicate: Series | list[bool]) Self[source]
 Filter elements by a boolean mask.
The original order of the remaining elements is preserved.
- Parameters:
 - predicate
 Boolean mask.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> mask = pl.Series("", [True, False, True]) >>> s.filter(mask) shape: (2,) Series: 'a' [i64] [ 1 3 ]
- floor() Series[source]
 Rounds down to the nearest integer value.
Only works on floating point Series.
Examples
>>> s = pl.Series("a", [1.12345, 2.56789, 3.901234]) >>> s.floor() shape: (3,) Series: 'a' [f64] [ 1.0 2.0 3.0 ]
- gather(indices: int | list[int] | Expr | Series | np.ndarray[Any, Any]) Series[source]
 Take values by index.
- Parameters:
 - indices
 Index location used for selection.
Examples
>>> s = pl.Series("a", [1, 2, 3, 4]) >>> s.gather([1, 3]) shape: (2,) Series: 'a' [i64] [ 2 4 ]
- gather_every(n: int) Series[source]
 Take every nth value in the Series and return as new Series.
- Parameters:
 - n
 Gather every n-th row.
Examples
>>> s = pl.Series("a", [1, 2, 3, 4]) >>> s.gather_every(2) shape: (2,) Series: 'a' [i64] [ 1 3 ]
- ge(other: Any) Self | Expr[source]
 Method equivalent of operator expression
series >= other.
- gt(other: Any) Self | Expr[source]
 Method equivalent of operator expression
series > other.
- has_validity() bool[source]
 Return True if the Series has a validity bitmask.
If there is no mask, it means that there are no
nullvalues.Notes
While the absence of a validity bitmask guarantees that a Series does not have
nullvalues, the converse is not true, eg: the presence of a bitmask does not mean that there are null values, as every value of the bitmask could befalse.To confirm that a column has
nullvalues usenull_count().
- hash( ) Series[source]
 Hash the Series.
The hash value is of type
UInt64.- Parameters:
 - seed
 Random seed parameter. Defaults to 0.
- seed_1
 Random seed parameter. Defaults to
seedif not set.- seed_2
 Random seed parameter. Defaults to
seedif not set.- seed_3
 Random seed parameter. Defaults to
seedif not set.
Notes
This implementation of
hash()does not guarantee stable results across different Polars versions. Its stability is only guaranteed within a single version.Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.hash(seed=42) shape: (3,) Series: 'a' [u64] [ 10734580197236529959 3022416320763508302 13756996518000038261 ]
- head(n: int = 10) Series[source]
 Get the first
nelements.- Parameters:
 - n
 Number of elements to return. If a negative value is passed, return all elements except the last
abs(n).
Examples
>>> s = pl.Series("a", [1, 2, 3, 4, 5]) >>> s.head(3) shape: (3,) Series: 'a' [i64] [ 1 2 3 ]
Pass a negative value to get all rows
exceptthe lastabs(n).>>> s.head(-3) shape: (2,) Series: 'a' [i64] [ 1 2 ]
- hist( ) DataFrame[source]
 Bin values into buckets and count their occurrences.
- Parameters:
 - bins
 Discretizations to make. If None given, we determine the boundaries based on the data.
- bin_count
 If no bins provided, this will be used to determine the distance of the bins
- Returns:
 - DataFrame
 
Warning
This functionality is experimental and may change without it being considered a breaking change.
Examples
>>> a = pl.Series("a", [1, 3, 8, 8, 2, 1, 3]) >>> a.hist(bin_count=4) shape: (5, 3) ┌─────────────┬─────────────┬─────────┐ │ break_point ┆ category ┆ a_count │ │ --- ┆ --- ┆ --- │ │ f64 ┆ cat ┆ u32 │ ╞═════════════╪═════════════╪═════════╡ │ 0.0 ┆ (-inf, 0.0] ┆ 0 │ │ 2.25 ┆ (0.0, 2.25] ┆ 3 │ │ 4.5 ┆ (2.25, 4.5] ┆ 2 │ │ 6.75 ┆ (4.5, 6.75] ┆ 0 │ │ inf ┆ (6.75, inf] ┆ 2 │ └─────────────┴─────────────┴─────────┘
- implode() Self[source]
 Aggregate values into a list.
- interpolate(method: InterpolationMethod = 'linear') Series[source]
 Fill null values using interpolation.
- Parameters:
 - method{‘linear’, ‘nearest’}
 Interpolation method.
Examples
>>> s = pl.Series("a", [1, 2, None, None, 5]) >>> s.interpolate() shape: (5,) Series: 'a' [f64] [ 1.0 2.0 3.0 4.0 5.0 ]
- is_between(
 - lower_bound: IntoExpr,
 - upper_bound: IntoExpr,
 - closed: ClosedInterval = 'both',
 Get a boolean mask of the values that fall between the given start/end values.
- Parameters:
 - lower_bound
 Lower bound value. Accepts expression input. Non-expression inputs (including strings) are parsed as literals.
- upper_bound
 Upper bound value. Accepts expression input. Non-expression inputs (including strings) are parsed as literals.
- closed{‘both’, ‘left’, ‘right’, ‘none’}
 Define which sides of the interval are closed (inclusive).
Examples
>>> s = pl.Series("num", [1, 2, 3, 4, 5]) >>> s.is_between(2, 4) shape: (5,) Series: 'num' [bool] [ false true true true false ]
Use the
closedargument to include or exclude the values at the bounds:>>> s.is_between(2, 4, closed="left") shape: (5,) Series: 'num' [bool] [ false true true false false ]
You can also use strings as well as numeric/temporal values:
>>> s = pl.Series("s", ["a", "b", "c", "d", "e"]) >>> s.is_between("b", "d", closed="both") shape: (5,) Series: 's' [bool] [ false true true true false ]
- is_boolean() bool[source]
 Check if this Series is a Boolean.
Deprecated since version 0.19.14: Use
Series.dtype == pl.Booleaninstead.Examples
>>> s = pl.Series("a", [True, False, True]) >>> s.is_boolean() True
- is_duplicated() Series[source]
 Get mask of all duplicated values.
- Returns:
 - Series
 Series of data type
Boolean.
Examples
>>> s = pl.Series("a", [1, 2, 2, 3]) >>> s.is_duplicated() shape: (4,) Series: 'a' [bool] [ false true true false ]
- is_empty() bool[source]
 Check if the Series is empty.
Examples
>>> s = pl.Series("a", [], dtype=pl.Float32) >>> s.is_empty() True
- is_finite() Series[source]
 Returns a boolean Series indicating which values are finite.
- Returns:
 - Series
 Series of data type
Boolean.
Examples
>>> import numpy as np >>> s = pl.Series("a", [1.0, 2.0, np.inf]) >>> s.is_finite() shape: (3,) Series: 'a' [bool] [ true true false ]
- is_first() Series[source]
 Return a boolean mask indicating the first occurrence of each distinct value.
Deprecated since version 0.19.3: This method has been renamed to
Series.is_first_distinct().- Returns:
 - Series
 Series of data type
Boolean.
- is_first_distinct() Series[source]
 Return a boolean mask indicating the first occurrence of each distinct value.
- Returns:
 - Series
 Series of data type
Boolean.
Examples
>>> s = pl.Series([1, 1, 2, 3, 2]) >>> s.is_first_distinct() shape: (5,) Series: '' [bool] [ true false true true false ]
- is_float() bool[source]
 Check if this Series has floating point numbers.
Deprecated since version 0.19.13: Use
Series.dtype.is_float()instead.Examples
>>> s = pl.Series("a", [1.0, 2.0, 3.0]) >>> s.is_float() True
- is_in(
 - other: Series | Collection[Any],
 Check if elements of this Series are in the other Series.
- Returns:
 - Series
 Series of data type
Boolean.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s2 = pl.Series("b", [2, 4]) >>> s2.is_in(s) shape: (2,) Series: 'b' [bool] [ true false ]
>>> # check if some values are a member of sublists >>> sets = pl.Series("sets", [[1, 2, 3], [1, 2], [9, 10]]) >>> optional_members = pl.Series("optional_members", [1, 2, 3]) >>> print(sets) shape: (3,) Series: 'sets' [list[i64]] [ [1, 2, 3] [1, 2] [9, 10] ] >>> print(optional_members) shape: (3,) Series: 'optional_members' [i64] [ 1 2 3 ] >>> optional_members.is_in(sets) shape: (3,) Series: 'optional_members' [bool] [ true true false ]
- is_infinite() Series[source]
 Returns a boolean Series indicating which values are infinite.
- Returns:
 - Series
 Series of data type
Boolean.
Examples
>>> import numpy as np >>> s = pl.Series("a", [1.0, 2.0, np.inf]) >>> s.is_infinite() shape: (3,) Series: 'a' [bool] [ false false true ]
- is_integer(signed: bool | None = None) bool[source]
 Check if this Series datatype is an integer (signed or unsigned).
Deprecated since version 0.19.13: Use
Series.dtype.is_integer()instead. For signed/unsigned variants, useSeries.dtype.is_signed_integer()orSeries.dtype.is_unsigned_integer().- Parameters:
 - signed
 if
None, both signed and unsigned integer dtypes will match.if
True, only signed integer dtypes will be considered a match.if
False, only unsigned integer dtypes will be considered a match.
Examples
>>> s = pl.Series("a", [1, 2, 3], dtype=pl.UInt32) >>> s.is_integer() True >>> s.is_integer(signed=False) True >>> s.is_integer(signed=True) False
- is_last() Series[source]
 Return a boolean mask indicating the last occurrence of each distinct value.
Deprecated since version 0.19.3: This method has been renamed to
Series.is_last_distinct().- Returns:
 - Series
 Series of data type
Boolean.
- is_last_distinct() Series[source]
 Return a boolean mask indicating the last occurrence of each distinct value.
- Returns:
 - Series
 Series of data type
Boolean.
Examples
>>> s = pl.Series([1, 1, 2, 3, 2]) >>> s.is_last_distinct() shape: (5,) Series: '' [bool] [ false true false true true ]
- is_nan() Series[source]
 Returns a boolean Series indicating which values are not NaN.
- Returns:
 - Series
 Series of data type
Boolean.
Examples
>>> import numpy as np >>> s = pl.Series("a", [1.0, 2.0, 3.0, np.nan]) >>> s.is_nan() shape: (4,) Series: 'a' [bool] [ false false false true ]
- is_not_nan() Series[source]
 Returns a boolean Series indicating which values are not NaN.
- Returns:
 - Series
 Series of data type
Boolean.
Examples
>>> import numpy as np >>> s = pl.Series("a", [1.0, 2.0, 3.0, np.nan]) >>> s.is_not_nan() shape: (4,) Series: 'a' [bool] [ true true true false ]
- is_not_null() Series[source]
 Returns a boolean Series indicating which values are not null.
- Returns:
 - Series
 Series of data type
Boolean.
Examples
>>> s = pl.Series("a", [1.0, 2.0, 3.0, None]) >>> s.is_not_null() shape: (4,) Series: 'a' [bool] [ true true true false ]
- is_null() Series[source]
 Returns a boolean Series indicating which values are null.
- Returns:
 - Series
 Series of data type
Boolean.
Examples
>>> s = pl.Series("a", [1.0, 2.0, 3.0, None]) >>> s.is_null() shape: (4,) Series: 'a' [bool] [ false false false true ]
- is_numeric() bool[source]
 Check if this Series datatype is numeric.
Deprecated since version 0.19.13: Use
Series.dtype.is_numeric()instead.Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.is_numeric() True
- is_sorted(*, descending: bool = False) bool[source]
 Check if the Series is sorted.
- Parameters:
 - descending
 Check if the Series is sorted in descending order
- is_temporal(excluding: OneOrMoreDataTypes | None = None) bool[source]
 Check if this Series datatype is temporal.
Deprecated since version 0.19.13: Use
Series.dtype.is_temporal()instead.- Parameters:
 - excluding
 Optionally exclude one or more temporal dtypes from matching.
Examples
>>> from datetime import date >>> s = pl.Series([date(2021, 1, 1), date(2021, 1, 2), date(2021, 1, 3)]) >>> s.is_temporal() True >>> s.is_temporal(excluding=[pl.Date]) False
- is_unique() Series[source]
 Get mask of all unique values.
- Returns:
 - Series
 Series of data type
Boolean.
Examples
>>> s = pl.Series("a", [1, 2, 2, 3]) >>> s.is_unique() shape: (4,) Series: 'a' [bool] [ true false false true ]
- is_utf8() bool[source]
 Check if this Series datatype is a Utf8.
Deprecated since version 0.19.14: Use
Series.dtype == pl.Utf8instead.Examples
>>> s = pl.Series("x", ["a", "b", "c"]) >>> s.is_utf8() True
- item(index: int | None = None) Any[source]
 Return the Series as a scalar, or return the element at the given index.
If no index is provided, this is equivalent to
s[0], with a check that the shape is (1,). With an index, this is equivalent tos[index].Examples
>>> s1 = pl.Series("a", [1]) >>> s1.item() 1 >>> s2 = pl.Series("a", [9, 8, 7]) >>> s2.cum_sum().item(-1) 24
- kurtosis(*, fisher: bool = True, bias: bool = True) float | None[source]
 Compute the kurtosis (Fisher or Pearson) of a dataset.
Kurtosis is the fourth central moment divided by the square of the variance. If Fisher’s definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution. If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators
See scipy.stats for more information
- Parameters:
 - fisherbool, optional
 If True, Fisher’s definition is used (normal ==> 0.0). If False, Pearson’s definition is used (normal ==> 3.0).
- biasbool, optional
 If False, the calculations are corrected for statistical bias.
- le(other: Any) Self | Expr[source]
 Method equivalent of operator expression
series <= other.
- len() int[source]
 Return the number of elements in this Series.
Null values are treated like regular elements in this context.
Examples
>>> s = pl.Series("a", [1, 2, None]) >>> s.len() 3
- limit(n: int = 10) Series[source]
 Get the first
nelements.Alias for
Series.head().- Parameters:
 - n
 Number of elements to return. If a negative value is passed, return all elements except the last
abs(n).
See also
- log10() Series[source]
 Compute the base 10 logarithm of the input array, element-wise.
- log1p() Series[source]
 Compute the natural logarithm of the input array plus one, element-wise.
- lower_bound() Self[source]
 Return the lower bound of this Series’ dtype as a unit Series.
See also
upper_boundreturn the upper bound of the given Series’ dtype.
Examples
>>> s = pl.Series("s", [-1, 0, 1], dtype=pl.Int32) >>> s.lower_bound() shape: (1,) Series: 's' [i32] [ -2147483648 ]
>>> s = pl.Series("s", [1.0, 2.5, 3.0], dtype=pl.Float32) >>> s.lower_bound() shape: (1,) Series: 's' [f32] [ -inf ]
- lt(other: Any) Self | Expr[source]
 Method equivalent of operator expression
series < other.
- map_dict( ) Self[source]
 Replace values in the Series using a remapping dictionary.
Deprecated since version 0.19.16: This method has been renamed to
replace(). The default behavior has changed to keep any values not present in the mapping unchanged. Passdefault=Noneto keep existing behavior.- Parameters:
 - mapping
 Dictionary containing the before/after values to map.
- default
 Value to use when the remapping dict does not contain the lookup value. Use
pl.first(), to keep the original value.- return_dtype
 Set return dtype to override automatic return dtype determination.
- map_elements(
 - function: Callable[[Any], Any],
 - return_dtype: PolarsDataType | None = None,
 - *,
 - skip_nulls: bool = True,
 Map a custom/user-defined function (UDF) over elements in this Series.
Warning
This method is much slower than the native expressions API. Only use it if you cannot implement your logic otherwise.
If the function returns a different datatype, the return_dtype arg should be set, otherwise the method will fail.
Implementing logic using a Python function is almost always significantly slower and more memory intensive than implementing the same logic using the native expression API because:
The native expression engine runs in Rust; UDFs run in Python.
Use of Python UDFs forces the DataFrame to be materialized in memory.
Polars-native expressions can be parallelised (UDFs typically cannot).
Polars-native expressions can be logically optimised (UDFs cannot).
Wherever possible you should strongly prefer the native expression API to achieve the best performance.
- Parameters:
 - function
 Custom function or lambda.
- return_dtype
 Output datatype. If none is given, the same datatype as this Series will be used.
- skip_nulls
 Nulls will be skipped and not passed to the python function. This is faster because python can be skipped and because we call more specialized functions.
- Returns:
 - Series
 
Warning
If
return_dtypeis not provided, this may lead to unexpected results. We allow this, but it is considered a bug in the user’s query.Notes
If your function is expensive and you don’t want it to be called more than once for a given input, consider applying an
@lru_cachedecorator to it. If your data is suitable you may achieve significant speedups.Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.map_elements(lambda x: x + 10) shape: (3,) Series: 'a' [i64] [ 11 12 13 ]
- max() PythonLiteral | None[source]
 Get the maximum value in this Series.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.max() 3
- mean() int | float | None[source]
 Reduce this Series to the mean value.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.mean() 2.0
- median() float | None[source]
 Get the median of this Series.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.median() 2.0
- min() PythonLiteral | None[source]
 Get the minimal value in this Series.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.min() 1
- mode() Series[source]
 Compute the most occurring value(s).
Can return multiple Values.
Examples
>>> s = pl.Series("a", [1, 2, 2, 3]) >>> s.mode() shape: (1,) Series: 'a' [i64] [ 2 ]
- n_chunks() int[source]
 Get the number of chunks that this Series contains.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.n_chunks() 1 >>> s2 = pl.Series("a", [4, 5, 6])
Concatenate Series with rechunk = True
>>> pl.concat([s, s2]).n_chunks() 1
Concatenate Series with rechunk = False
>>> pl.concat([s, s2], rechunk=False).n_chunks() 2
- n_unique() int[source]
 Count the number of unique values in this Series.
Examples
>>> s = pl.Series("a", [1, 2, 2, 3]) >>> s.n_unique() 3
- nan_max() int | float | date | datetime | timedelta | str[source]
 Get maximum value, but propagate/poison encountered NaN values.
This differs from numpy’s
nanmaxas numpy defaults to propagating NaN values, whereas polars defaults to ignoring them.
- nan_min() int | float | date | datetime | timedelta | str[source]
 Get minimum value, but propagate/poison encountered NaN values.
This differs from numpy’s
nanmaxas numpy defaults to propagating NaN values, whereas polars defaults to ignoring them.
- ne(other: Any) Self | Expr[source]
 Method equivalent of operator expression
series != other.
- ne_missing(other: Expr) Expr[source]
 - ne_missing(other: Any) Self
 Method equivalent of equality operator
series != otherwhereNone == None.This differs from the standard
newhere null values are propagated.- Parameters:
 - other
 A literal or expression value to compare with.
See also
eq_missingne
Examples
>>> s1 = pl.Series("a", [333, 200, None]) >>> s2 = pl.Series("a", [100, 200, None]) >>> s1.ne(s2) shape: (3,) Series: 'a' [bool] [ true false null ] >>> s1.ne_missing(s2) shape: (3,) Series: 'a' [bool] [ true false false ]
- new_from_index(index: int, length: int) Self[source]
 Create a new Series filled with values from the given index.
- not_() Series[source]
 Negate a boolean Series.
- Returns:
 - Series
 Series of data type
Boolean.
Examples
>>> s = pl.Series("a", [True, False, False]) >>> s.not_() shape: (3,) Series: 'a' [bool] [ false true true ]
- pct_change(n: int | IntoExprColumn = 1) Series[source]
 Computes percentage change between values.
Percentage change (as fraction) between current element and most-recent non-null element at least
nperiod(s) before the current element.Computes the change from the previous row by default.
- Parameters:
 - n
 periods to shift for forming percent change.
Examples
>>> pl.Series(range(10)).pct_change() shape: (10,) Series: '' [f64] [ null inf 1.0 0.5 0.333333 0.25 0.2 0.166667 0.142857 0.125 ]
>>> pl.Series([1, 2, 4, 8, 16, 32, 64, 128, 256, 512]).pct_change(2) shape: (10,) Series: '' [f64] [ null null 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 ]
- peak_max() Self[source]
 Get a boolean mask of the local maximum peaks.
Examples
>>> s = pl.Series("a", [1, 2, 3, 4, 5]) >>> s.peak_max() shape: (5,) Series: 'a' [bool] [ false false false false true ]
- peak_min() Self[source]
 Get a boolean mask of the local minimum peaks.
Examples
>>> s = pl.Series("a", [4, 1, 3, 2, 5]) >>> s.peak_min() shape: (5,) Series: 'a' [bool] [ false true false true false ]
- pow( ) Series[source]
 Raise to the power of the given exponent.
- Parameters:
 - exponent
 The exponent. Accepts Series input.
Examples
>>> s = pl.Series("foo", [1, 2, 3, 4]) >>> s.pow(3) shape: (4,) Series: 'foo' [f64] [ 1.0 8.0 27.0 64.0 ]
- qcut(
 - quantiles: Sequence[float] | int,
 - *,
 - labels: Sequence[str] | None = None,
 - left_closed: bool = False,
 - allow_duplicates: bool = False,
 - include_breaks: bool = False,
 - break_point_label: str = 'break_point',
 - category_label: str = 'category',
 - as_series: Literal[True] = True,
 - qcut(
 - quantiles: Sequence[float] | int,
 - *,
 - labels: Sequence[str] | None = None,
 - left_closed: bool = False,
 - allow_duplicates: bool = False,
 - include_breaks: bool = False,
 - break_point_label: str = 'break_point',
 - category_label: str = 'category',
 - as_series: Literal[False],
 - qcut(
 - quantiles: Sequence[float] | int,
 - *,
 - labels: Sequence[str] | None = None,
 - left_closed: bool = False,
 - allow_duplicates: bool = False,
 - include_breaks: bool = False,
 - break_point_label: str = 'break_point',
 - category_label: str = 'category',
 - as_series: bool,
 Bin continuous values into discrete categories based on their quantiles.
- Parameters:
 - quantiles
 Either a list of quantile probabilities between 0 and 1 or a positive integer determining the number of bins with uniform probability.
- labels
 Names of the categories. The number of labels must be equal to the number of cut points plus one.
- left_closed
 Set the intervals to be left-closed instead of right-closed.
- allow_duplicates
 If set to
True, duplicates in the resulting quantiles are dropped, rather than raising aDuplicateError. This can happen even with unique probabilities, depending on the data.- include_breaks
 Include a column with the right endpoint of the bin each observation falls in. This will change the data type of the output from a
Categoricalto aStruct.- break_point_label
 Name of the breakpoint column. Only used if
include_breaksis set toTrue.Deprecated since version 0.19.0: This parameter will be removed. Use
Series.struct.rename_fieldsto rename the field instead.- category_label
 Name of the category column. Only used if
include_breaksis set toTrue.Deprecated since version 0.19.0: This parameter will be removed. Use
Series.struct.rename_fieldsto rename the field instead.- as_series
 If set to
False, return a DataFrame containing the original values, the breakpoints, and the categories.Deprecated since version 0.19.0: This parameter will be removed. The same behavior can be achieved by setting
include_breaks=True, unnesting the resulting struct Series, and adding the result to the original Series.
- Returns:
 - Series
 Series of data type
Categoricalifinclude_breaksis set toFalse(default), otherwise a Series of data typeStruct.
Warning
This functionality is experimental and may change without it being considered a breaking change.
See also
Examples
Divide a column into three categories according to pre-defined quantile probabilities.
>>> s = pl.Series("foo", [-2, -1, 0, 1, 2]) >>> s.qcut([0.25, 0.75], labels=["a", "b", "c"]) shape: (5,) Series: 'foo' [cat] [ "a" "a" "b" "b" "c" ]
Divide a column into two categories using uniform quantile probabilities.
>>> s.qcut(2, labels=["low", "high"], left_closed=True) shape: (5,) Series: 'foo' [cat] [ "low" "low" "high" "high" "high" ]
Create a DataFrame with the breakpoint and category for each value.
>>> cut = s.qcut([0.25, 0.75], include_breaks=True).alias("cut") >>> s.to_frame().with_columns(cut).unnest("cut") shape: (5, 3) ┌─────┬─────────────┬────────────┐ │ foo ┆ break_point ┆ category │ │ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ cat │ ╞═════╪═════════════╪════════════╡ │ -2 ┆ -1.0 ┆ (-inf, -1] │ │ -1 ┆ -1.0 ┆ (-inf, -1] │ │ 0 ┆ 1.0 ┆ (-1, 1] │ │ 1 ┆ 1.0 ┆ (-1, 1] │ │ 2 ┆ inf ┆ (1, inf] │ └─────┴─────────────┴────────────┘
- quantile(
 - quantile: float,
 - interpolation: RollingInterpolationMethod = 'nearest',
 Get the quantile value of this Series.
- Parameters:
 - quantile
 Quantile between 0.0 and 1.0.
- interpolation{‘nearest’, ‘higher’, ‘lower’, ‘midpoint’, ‘linear’}
 Interpolation method.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.quantile(0.5) 2.0
- rank( ) Series[source]
 Assign ranks to data, dealing with ties appropriately.
- Parameters:
 - method{‘average’, ‘min’, ‘max’, ‘dense’, ‘ordinal’, ‘random’}
 The method used to assign ranks to tied elements. The following methods are available (default is ‘average’):
‘average’ : The average of the ranks that would have been assigned to all the tied values is assigned to each value.
‘min’ : The minimum of the ranks that would have been assigned to all the tied values is assigned to each value. (This is also referred to as “competition” ranking.)
‘max’ : The maximum of the ranks that would have been assigned to all the tied values is assigned to each value.
‘dense’ : Like ‘min’, but the rank of the next highest element is assigned the rank immediately after those assigned to the tied elements.
‘ordinal’ : All values are given a distinct rank, corresponding to the order that the values occur in the Series.
‘random’ : Like ‘ordinal’, but the rank for ties is not dependent on the order that the values occur in the Series.
- descending
 Rank in descending order.
- seed
 If
method="random", use this as seed.
Examples
The ‘average’ method:
>>> s = pl.Series("a", [3, 6, 1, 1, 6]) >>> s.rank() shape: (5,) Series: 'a' [f64] [ 3.0 4.5 1.5 1.5 4.5 ]
The ‘ordinal’ method:
>>> s = pl.Series("a", [3, 6, 1, 1, 6]) >>> s.rank("ordinal") shape: (5,) Series: 'a' [u32] [ 3 4 1 2 5 ]
- rechunk(*, in_place: bool = False) Self[source]
 Create a single chunk of memory for this Series.
- Parameters:
 - in_place
 In place or not.
- reinterpret(*, signed: bool = True) Series[source]
 Reinterpret the underlying bits as a signed/unsigned integer.
This operation is only allowed for 64bit integers. For lower bits integers, you can safely use that cast operation.
- Parameters:
 - signed
 If True, reinterpret as
pl.Int64. Otherwise, reinterpret aspl.UInt64.
- rename(name: str) Series[source]
 Rename this Series.
Alias for
Series.alias().- Parameters:
 - name
 New name.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.rename("b") shape: (3,) Series: 'b' [i64] [ 1 2 3 ]
- replace(
 - mapping: dict[Any, Any],
 - *,
 - default: Any = _NoDefault.no_default,
 - return_dtype: PolarsDataType | None = None,
 Replace values according to the given mapping.
Needs a global string cache for lazily evaluated queries on columns of type
Categorical.- Parameters:
 - mapping
 Mapping of values to their replacement.
- default
 Value to use when the mapping does not contain the lookup value. Defaults to keeping the original value.
- return_dtype
 Set return dtype to override automatic return dtype determination.
See also
Examples
Replace a single value by another value. Values not in the mapping remain unchanged.
>>> s = pl.Series("a", [1, 2, 2, 3]) >>> s.replace({2: 100}) shape: (4,) Series: 'a' [i64] [ 1 100 100 3 ]
Replace multiple values. Specify a default to set values not in the given map to the default value.
>>> s = pl.Series("country_code", ["FR", "ES", "DE", None]) >>> country_code_map = { ... "CA": "Canada", ... "DE": "Germany", ... "FR": "France", ... None: "unspecified", ... } >>> s.replace(country_code_map, default=None) shape: (4,) Series: 'country_code' [str] [ "France" null "Germany" "unspecified" ]
The return type can be overridden with the
return_dtypeargument.>>> s = pl.Series("a", [0, 1, 2, 3]) >>> s.replace({1: 10, 2: 20}, default=0, return_dtype=pl.UInt8) shape: (4,) Series: 'a' [u8] [ 0 10 20 0 ]
- reshape(dimensions: tuple[int, ...]) Series[source]
 Reshape this Series to a flat Series or a Series of Lists.
- Parameters:
 - dimensions
 Tuple of the dimension sizes. If a -1 is used in any of the dimensions, that dimension is inferred.
- Returns:
 - Series
 If a single dimension is given, results in a Series of the original data type. If a multiple dimensions are given, results in a Series of data type
Listwith shape (rows, cols).
See also
Series.list.explodeExplode a list column.
Examples
>>> s = pl.Series("foo", [1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> s.reshape((3, 3)) shape: (3,) Series: 'foo' [list[i64]] [ [1, 2, 3] [4, 5, 6] [7, 8, 9] ]
- reverse() Series[source]
 Return Series in reverse order.
Examples
>>> s = pl.Series("a", [1, 2, 3], dtype=pl.Int8) >>> s.reverse() shape: (3,) Series: 'a' [i8] [ 3 2 1 ]
- rle() Series[source]
 Get the lengths of runs of identical values.
- Returns:
 - Series
 Series of data type
Structwith Fields “lengths” and “values”.
Examples
>>> s = pl.Series("s", [1, 1, 2, 1, None, 1, 3, 3]) >>> s.rle().struct.unnest() shape: (6, 2) ┌─────────┬────────┐ │ lengths ┆ values │ │ --- ┆ --- │ │ i32 ┆ i64 │ ╞═════════╪════════╡ │ 2 ┆ 1 │ │ 1 ┆ 2 │ │ 1 ┆ 1 │ │ 1 ┆ null │ │ 1 ┆ 1 │ │ 2 ┆ 3 │ └─────────┴────────┘
- rle_id() Series[source]
 Map values to run IDs.
Similar to RLE, but it maps each value to an ID corresponding to the run into which it falls. This is especially useful when you want to define groups by runs of identical values rather than the values themselves.
- Returns:
 - Series
 
See also
Examples
>>> s = pl.Series("s", [1, 1, 2, 1, None, 1, 3, 3]) >>> s.rle_id() shape: (8,) Series: 's' [u32] [ 0 0 1 2 3 4 5 5 ]
- rolling_apply(
 - function: Callable[[Series], Any],
 - window_size: int,
 - weights: list[float] | None = None,
 - min_periods: int | None = None,
 - *,
 - center: bool = False,
 Apply a custom rolling window function.
Deprecated since version 0.19.0: This method has been renamed to
Series.rolling_map().- Parameters:
 - function
 Aggregation function
- window_size
 The length of the window.
- weights
 An optional slice with the same length as the window that will be multiplied elementwise with the values in the window.
- min_periods
 The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.
- center
 Set the labels at the center of the window
- rolling_map(
 - function: Callable[[Series], Any],
 - window_size: int,
 - weights: list[float] | None = None,
 - min_periods: int | None = None,
 - *,
 - center: bool = False,
 Compute a custom rolling window function.
Warning
Computing custom functions is extremely slow. Use specialized rolling functions such as
Series.rolling_sum()if at all possible.- Parameters:
 - function
 Custom aggregation function.
- window_size
 Size of the window. The window at a given row will include the row itself and the
window_size - 1elements before it.- weights
 A list of weights with the same length as the window that will be multiplied elementwise with the values in the window.
- min_periods
 The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.
- center
 Set the labels at the center of the window.
Examples
>>> from numpy import nansum >>> s = pl.Series([11.0, 2.0, 9.0, float("nan"), 8.0]) >>> s.rolling_map(nansum, window_size=3) shape: (5,) Series: '' [f64] [ null null 22.0 11.0 17.0 ]
- rolling_max(
 - window_size: int,
 - weights: list[float] | None = None,
 - min_periods: int | None = None,
 - *,
 - center: bool = False,
 Apply a rolling max (moving max) over the values in this array.
A window of length
window_sizewill traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by theweightvector. The resulting values will be aggregated to their max.The window at a given row will include the row itself and the
window_size - 1elements before it.- Parameters:
 - window_size
 The length of the window.
- weights
 An optional slice with the same length as the window that will be multiplied elementwise with the values in the window.
- min_periods
 The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.
- center
 Set the labels at the center of the window
Examples
>>> s = pl.Series("a", [100, 200, 300, 400, 500]) >>> s.rolling_max(window_size=2) shape: (5,) Series: 'a' [i64] [ null 200 300 400 500 ]
- rolling_mean(
 - window_size: int,
 - weights: list[float] | None = None,
 - min_periods: int | None = None,
 - *,
 - center: bool = False,
 Apply a rolling mean (moving mean) over the values in this array.
A window of length
window_sizewill traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by theweightvector. The resulting values will be aggregated to their mean.The window at a given row will include the row itself and the
window_size - 1elements before it.- Parameters:
 - window_size
 The length of the window.
- weights
 An optional slice with the same length as the window that will be multiplied elementwise with the values in the window.
- min_periods
 The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.
- center
 Set the labels at the center of the window
Examples
>>> s = pl.Series("a", [100, 200, 300, 400, 500]) >>> s.rolling_mean(window_size=2) shape: (5,) Series: 'a' [f64] [ null 150.0 250.0 350.0 450.0 ]
- rolling_median(
 - window_size: int,
 - weights: list[float] | None = None,
 - min_periods: int | None = None,
 - *,
 - center: bool = False,
 Compute a rolling median.
- Parameters:
 - window_size
 The length of the window.
- weights
 An optional slice with the same length as the window that will be multiplied elementwise with the values in the window.
- min_periods
 The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.
- center
 Set the labels at the center of the window
- The window at a given row will include the row itself and the `window_size - 1`
 - elements before it.
 
Examples
>>> s = pl.Series("a", [1.0, 2.0, 3.0, 4.0, 6.0, 8.0]) >>> s.rolling_median(window_size=3) shape: (6,) Series: 'a' [f64] [ null null 2.0 3.0 4.0 6.0 ]
- rolling_min(
 - window_size: int,
 - weights: list[float] | None = None,
 - min_periods: int | None = None,
 - *,
 - center: bool = False,
 Apply a rolling min (moving min) over the values in this array.
A window of length
window_sizewill traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by theweightvector. The resulting values will be aggregated to their min.The window at a given row will include the row itself and the
window_size - 1elements before it.- Parameters:
 - window_size
 The length of the window.
- weights
 An optional slice with the same length as the window that will be multiplied elementwise with the values in the window.
- min_periods
 The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.
- center
 Set the labels at the center of the window
Examples
>>> s = pl.Series("a", [100, 200, 300, 400, 500]) >>> s.rolling_min(window_size=3) shape: (5,) Series: 'a' [i64] [ null null 100 200 300 ]
- rolling_quantile(
 - quantile: float,
 - interpolation: RollingInterpolationMethod = 'nearest',
 - window_size: int = 2,
 - weights: list[float] | None = None,
 - min_periods: int | None = None,
 - *,
 - center: bool = False,
 Compute a rolling quantile.
The window at a given row will include the row itself and the
window_size - 1elements before it.- Parameters:
 - quantile
 Quantile between 0.0 and 1.0.
- interpolation{‘nearest’, ‘higher’, ‘lower’, ‘midpoint’, ‘linear’}
 Interpolation method.
- window_size
 The length of the window.
- weights
 An optional slice with the same length as the window that will be multiplied elementwise with the values in the window.
- min_periods
 The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.
- center
 Set the labels at the center of the window
Examples
>>> s = pl.Series("a", [1.0, 2.0, 3.0, 4.0, 6.0, 8.0]) >>> s.rolling_quantile(quantile=0.33, window_size=3) shape: (6,) Series: 'a' [f64] [ null null 1.0 2.0 3.0 4.0 ] >>> s.rolling_quantile(quantile=0.33, interpolation="linear", window_size=3) shape: (6,) Series: 'a' [f64] [ null null 1.66 2.66 3.66 5.32 ]
- rolling_skew( ) Series[source]
 Compute a rolling skew.
The window at a given row includes the row itself and the
window_size - 1elements before it.- Parameters:
 - window_size
 Integer size of the rolling window.
- bias
 If False, the calculations are corrected for statistical bias.
Examples
>>> pl.Series([1, 4, 2, 9]).rolling_skew(3) shape: (4,) Series: '' [f64] [ null null 0.381802 0.47033 ]
Note how the values match
>>> pl.Series([1, 4, 2]).skew(), pl.Series([4, 2, 9]).skew() (0.38180177416060584, 0.47033046033698594)
- rolling_std(
 - window_size: int,
 - weights: list[float] | None = None,
 - min_periods: int | None = None,
 - *,
 - center: bool = False,
 - ddof: int = 1,
 Compute a rolling std dev.
A window of length
window_sizewill traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by theweightvector. The resulting values will be aggregated to their std dev.The window at a given row will include the row itself and the
window_size - 1elements before it.- Parameters:
 - window_size
 The length of the window.
- weights
 An optional slice with the same length as the window that will be multiplied elementwise with the values in the window.
- min_periods
 The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.
- center
 Set the labels at the center of the window
- ddof
 “Delta Degrees of Freedom”: The divisor for a length N window is N - ddof
Examples
>>> s = pl.Series("a", [1.0, 2.0, 3.0, 4.0, 6.0, 8.0]) >>> s.rolling_std(window_size=3) shape: (6,) Series: 'a' [f64] [ null null 1.0 1.0 1.527525 2.0 ]
- rolling_sum(
 - window_size: int,
 - weights: list[float] | None = None,
 - min_periods: int | None = None,
 - *,
 - center: bool = False,
 Apply a rolling sum (moving sum) over the values in this array.
A window of length
window_sizewill traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by theweightvector. The resulting values will be aggregated to their sum.The window at a given row will include the row itself and the
window_size - 1elements before it.- Parameters:
 - window_size
 The length of the window.
- weights
 An optional slice with the same length of the window that will be multiplied elementwise with the values in the window.
- min_periods
 The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.
- center
 Set the labels at the center of the window
Examples
>>> s = pl.Series("a", [1, 2, 3, 4, 5]) >>> s.rolling_sum(window_size=2) shape: (5,) Series: 'a' [i64] [ null 3 5 7 9 ]
- rolling_var(
 - window_size: int,
 - weights: list[float] | None = None,
 - min_periods: int | None = None,
 - *,
 - center: bool = False,
 - ddof: int = 1,
 Compute a rolling variance.
A window of length
window_sizewill traverse the array. The values that fill this window will (optionally) be multiplied with the weights given by theweightvector. The resulting values will be aggregated to their variance.The window at a given row will include the row itself and the
window_size - 1elements before it.- Parameters:
 - window_size
 The length of the window.
- weights
 An optional slice with the same length as the window that will be multiplied elementwise with the values in the window.
- min_periods
 The number of values in the window that should be non-null before computing a result. If None, it will be set equal to window size.
- center
 Set the labels at the center of the window
- ddof
 “Delta Degrees of Freedom”: The divisor for a length N window is N - ddof
Examples
>>> s = pl.Series("a", [1.0, 2.0, 3.0, 4.0, 6.0, 8.0]) >>> s.rolling_var(window_size=3) shape: (6,) Series: 'a' [f64] [ null null 1.0 1.0 2.333333 4.0 ]
- round(decimals: int = 0) Series[source]
 Round underlying floating point data by
decimalsdigits.- Parameters:
 - decimals
 number of decimals to round by.
Examples
>>> s = pl.Series("a", [1.12345, 2.56789, 3.901234]) >>> s.round(2) shape: (3,) Series: 'a' [f64] [ 1.12 2.57 3.9 ]
- round_sig_figs(digits: int) Series[source]
 Round to a number of significant figures.
- Parameters:
 - digits
 Number of significant figures to round to.
Examples
>>> s = pl.Series([0.01234, 3.333, 1234.0]) >>> s.round_sig_figs(2) shape: (3,) Series: '' [f64] [ 0.012 3.3 1200.0 ]
- sample(
 - n: int | None = None,
 - *,
 - fraction: float | None = None,
 - with_replacement: bool = False,
 - shuffle: bool = False,
 - seed: int | None = None,
 Sample from this Series.
- Parameters:
 - n
 Number of items to return. Cannot be used with
fraction. Defaults to 1 iffractionis None.- fraction
 Fraction of items to return. Cannot be used with
n.- with_replacement
 Allow values to be sampled more than once.
- shuffle
 Shuffle the order of sampled data points.
- seed
 Seed for the random number generator. If set to None (default), a random seed is generated for each sample operation.
Examples
>>> s = pl.Series("a", [1, 2, 3, 4, 5]) >>> s.sample(2, seed=0) shape: (2,) Series: 'a' [i64] [ 1 5 ]
- scatter(
 - indices: Series | ndarray[Any, Any] | Sequence[int] | int,
 - values: int | float | str | bool | date | datetime | Sequence[int] | Sequence[float] | Sequence[bool] | Sequence[str] | Sequence[date] | Sequence[datetime] | Series | None,
 Set values at the index locations.
- Parameters:
 - indices
 Integers representing the index locations.
- values
 Replacement values.
Notes
Use of this function is frequently an anti-pattern, as it can block optimization (predicate pushdown, etc). Consider using
pl.when(predicate).then(value).otherwise(self)instead.Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.scatter(1, 10) shape: (3,) Series: 'a' [i64] [ 1 10 3 ]
It is better to implement this as follows:
>>> s.to_frame().with_row_count("row_nr").select( ... pl.when(pl.col("row_nr") == 1).then(10).otherwise(pl.col("a")) ... ) shape: (3, 1) ┌─────────┐ │ literal │ │ --- │ │ i64 │ ╞═════════╡ │ 1 │ │ 10 │ │ 3 │ └─────────┘
- search_sorted(element: int | float, side: SearchSortedSide = 'any') int[source]
 - search_sorted( ) Series
 Find indices where elements should be inserted to maintain order.
\[a[i-1] < v <= a[i]\]- Parameters:
 - element
 Expression or scalar value.
- side{‘any’, ‘left’, ‘right’}
 If ‘any’, the index of the first suitable location found is given. If ‘left’, the index of the leftmost suitable location found is given. If ‘right’, return the rightmost suitable location found is given.
- series_equal( ) bool[source]
 Check whether the Series is equal to another Series.
Deprecated since version 0.19.16: This method has been renamed to
equals().- Parameters:
 - other
 Series to compare with.
- null_equal
 Consider null values as equal.
- strict
 Don’t allow different numerical dtypes, e.g. comparing
pl.UInt32with apl.Int64will returnFalse.
- set( ) Series[source]
 Set masked values.
- Parameters:
 - filter
 Boolean mask.
- value
 Value with which to replace the masked values.
Notes
Use of this function is frequently an anti-pattern, as it can block optimisation (predicate pushdown, etc). Consider using
pl.when(predicate).then(value).otherwise(self)instead.Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.set(s == 2, 10) shape: (3,) Series: 'a' [i64] [ 1 10 3 ]
It is better to implement this as follows:
>>> s.to_frame().select( ... pl.when(pl.col("a") == 2).then(10).otherwise(pl.col("a")) ... ) shape: (3, 1) ┌─────────┐ │ literal │ │ --- │ │ i64 │ ╞═════════╡ │ 1 │ │ 10 │ │ 3 │ └─────────┘
- set_at_idx(
 - indices: Series | ndarray[Any, Any] | Sequence[int] | int,
 - values: int | float | str | bool | date | datetime | Sequence[int] | Sequence[float] | Sequence[bool] | Sequence[str] | Sequence[date] | Sequence[datetime] | Series | None,
 Set values at the index locations.
Deprecated since version 0.19.14: This method has been renamed to
scatter().- Parameters:
 - indices
 Integers representing the index locations.
- values
 Replacement values.
- set_sorted(*, descending: bool = False) Self[source]
 Flags the Series as ‘sorted’.
Enables downstream code to user fast paths for sorted arrays.
- Parameters:
 - descending
 If the
Seriesorder is descending.
Warning
This can lead to incorrect results if this
Seriesis not sorted!! Use with care!Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.set_sorted().max() 3
- shift(n: int = 1, *, fill_value: IntoExpr | None = None) Series[source]
 Shift values by the given number of indices.
- Parameters:
 - n
 Number of indices to shift forward. If a negative value is passed, values are shifted in the opposite direction instead.
- fill_value
 Fill the resulting null values with this value. Accepts expression input. Non-expression inputs are parsed as literals.
Notes
This method is similar to the
LAGoperation in SQL when the value fornis positive. With a negative value forn, it is similar toLEAD.Examples
By default, values are shifted forward by one index.
>>> s = pl.Series([1, 2, 3, 4]) >>> s.shift() shape: (4,) Series: '' [i64] [ null 1 2 3 ]
Pass a negative value to shift in the opposite direction instead.
>>> s.shift(-2) shape: (4,) Series: '' [i64] [ 3 4 null null ]
Specify
fill_valueto fill the resulting null values.>>> s.shift(-2, fill_value=100) shape: (4,) Series: '' [i64] [ 3 4 100 100 ]
- shift_and_fill(fill_value: int | Expr, *, n: int = 1) Series[source]
 Shift values by the given number of places and fill the resulting null values.
Deprecated since version 0.19.12: Use
shift()instead.- Parameters:
 - fill_value
 Fill None values with the result of this expression.
- n
 Number of places to shift (may be negative).
- shrink_dtype() Series[source]
 Shrink numeric columns to the minimal required datatype.
Shrink to the dtype needed to fit the extrema of this [
Series]. This can be used to reduce memory pressure.
- shrink_to_fit(*, in_place: bool = False) Series[source]
 Shrink Series memory usage.
Shrinks the underlying array capacity to exactly fit the actual data. (Note that this function does not change the Series data type).
- shuffle(seed: int | None = None) Series[source]
 Shuffle the contents of this Series.
- Parameters:
 - seed
 Seed for the random number generator. If set to None (default), a random seed is generated each time the shuffle is called.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.shuffle(seed=1) shape: (3,) Series: 'a' [i64] [ 2 1 3 ]
- sign() Series[source]
 Compute the element-wise indication of the sign.
The returned values can be -1, 0, or 1:
-1 if x < 0.
0 if x == 0.
1 if x > 0.
(null values are preserved as-is).
Examples
>>> s = pl.Series("a", [-9.0, -0.0, 0.0, 4.0, None]) >>> s.sign() shape: (5,) Series: 'a' [i64] [ -1 0 0 1 null ]
- sin() Series[source]
 Compute the element-wise value for the sine.
Examples
>>> import math >>> s = pl.Series("a", [0.0, math.pi / 2.0, math.pi]) >>> s.sin() shape: (3,) Series: 'a' [f64] [ 0.0 1.0 1.2246e-16 ]
- sinh() Series[source]
 Compute the element-wise value for the hyperbolic sine.
Examples
>>> s = pl.Series("a", [1.0, 0.0, -1.0]) >>> s.sinh() shape: (3,) Series: 'a' [f64] [ 1.175201 0.0 -1.175201 ]
- skew(*, bias: bool = True) float | None[source]
 Compute the sample skewness of a data set.
For normally distributed data, the skewness should be about zero. For unimodal continuous distributions, a skewness value greater than zero means that there is more weight in the right tail of the distribution. The function
skewtestcan be used to determine if the skewness value is close enough to zero, statistically speaking.See scipy.stats for more information.
- Parameters:
 - biasbool, optional
 If False, the calculations are corrected for statistical bias.
Notes
The sample skewness is computed as the Fisher-Pearson coefficient of skewness, i.e.
\[g_1=\frac{m_3}{m_2^{3/2}}\]where
\[m_i=\frac{1}{N}\sum_{n=1}^N(x[n]-\bar{x})^i\]is the biased sample \(i\texttt{th}\) central moment, and \(\bar{x}\) is the sample mean. If
biasis False, the calculations are corrected for bias and the value computed is the adjusted Fisher-Pearson standardized moment coefficient, i.e.\[G_1 = \frac{k_3}{k_2^{3/2}} = \frac{\sqrt{N(N-1)}}{N-2}\frac{m_3}{m_2^{3/2}}\]
- slice(offset: int, length: int | None = None) Series[source]
 Get a slice of this Series.
- Parameters:
 - offset
 Start index. Negative indexing is supported.
- length
 Length of the slice. If set to
None, all rows starting at the offset will be selected.
Examples
>>> s = pl.Series("a", [1, 2, 3, 4]) >>> s.slice(1, 2) shape: (2,) Series: 'a' [i64] [ 2 3 ]
- sort(*, descending: bool = False, in_place: bool = False) Self[source]
 Sort this Series.
- Parameters:
 - descending
 Sort in descending order.
- in_place
 Sort in-place.
Examples
>>> s = pl.Series("a", [1, 3, 4, 2]) >>> s.sort() shape: (4,) Series: 'a' [i64] [ 1 2 3 4 ] >>> s.sort(descending=True) shape: (4,) Series: 'a' [i64] [ 4 3 2 1 ]
- sqrt() Series[source]
 Compute the square root of the elements.
Syntactic sugar for
>>> pl.Series([1, 2]) ** 0.5 shape: (2,) Series: '' [f64] [ 1.0 1.414214 ]
- std(ddof: int = 1) float | None[source]
 Get the standard deviation of this Series.
- Parameters:
 - ddof
 “Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where N represents the number of elements. By default ddof is 1.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.std() 1.0
- sum() int | float[source]
 Reduce this Series to the sum value.
Notes
Dtypes in {Int8, UInt8, Int16, UInt16} are cast to Int64 before summing to prevent overflow issues.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.sum() 6
- tail(n: int = 10) Series[source]
 Get the last
nelements.- Parameters:
 - n
 Number of elements to return. If a negative value is passed, return all elements except the first
abs(n).
Examples
>>> s = pl.Series("a", [1, 2, 3, 4, 5]) >>> s.tail(3) shape: (3,) Series: 'a' [i64] [ 3 4 5 ]
Pass a negative value to get all rows
exceptthe firstabs(n).>>> s.tail(-3) shape: (2,) Series: 'a' [i64] [ 4 5 ]
- take(indices: int | list[int] | Expr | Series | np.ndarray[Any, Any]) Series[source]
 Take values by index.
Deprecated since version 0.19.14: This method has been renamed to
gather().- Parameters:
 - indices
 Index location used for selection.
- take_every(n: int) Series[source]
 Take every nth value in the Series and return as new Series.
Deprecated since version 0.19.14: This method has been renamed to
gather_every().- Parameters:
 - n
 Gather every n-th row.
- tan() Series[source]
 Compute the element-wise value for the tangent.
Examples
>>> import math >>> s = pl.Series("a", [0.0, math.pi / 2.0, math.pi]) >>> s.tan() shape: (3,) Series: 'a' [f64] [ 0.0 1.6331e16 -1.2246e-16 ]
- tanh() Series[source]
 Compute the element-wise value for the hyperbolic tangent.
Examples
>>> s = pl.Series("a", [1.0, 0.0, -1.0]) >>> s.tanh() shape: (3,) Series: 'a' [f64] [ 0.761594 0.0 -0.761594 ]
- to_arrow() Array[source]
 Get the underlying Arrow Array.
If the Series contains only a single chunk this operation is zero copy.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s = s.to_arrow() >>> s <pyarrow.lib.Int64Array object at ...> [ 1, 2, 3 ]
- to_dummies(separator: str = '_') DataFrame[source]
 Get dummy/indicator variables.
- Parameters:
 - separator
 Separator/delimiter used when generating column names.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.to_dummies() shape: (3, 3) ┌─────┬─────┬─────┐ │ a_1 ┆ a_2 ┆ a_3 │ │ --- ┆ --- ┆ --- │ │ u8 ┆ u8 ┆ u8 │ ╞═════╪═════╪═════╡ │ 1 ┆ 0 ┆ 0 │ │ 0 ┆ 1 ┆ 0 │ │ 0 ┆ 0 ┆ 1 │ └─────┴─────┴─────┘
- to_frame(name: str | None = None) DataFrame[source]
 Cast this Series to a DataFrame.
- Parameters:
 - name
 optionally name/rename the Series column in the new DataFrame.
Examples
>>> s = pl.Series("a", [123, 456]) >>> df = s.to_frame() >>> df shape: (2, 1) ┌─────┐ │ a │ │ --- │ │ i64 │ ╞═════╡ │ 123 │ │ 456 │ └─────┘
>>> df = s.to_frame("xyz") >>> df shape: (2, 1) ┌─────┐ │ xyz │ │ --- │ │ i64 │ ╞═════╡ │ 123 │ │ 456 │ └─────┘
- to_init_repr(n: int = 1000) str[source]
 Convert Series to instantiatable string representation.
- Parameters:
 - n
 Only use first n elements.
Examples
>>> s = pl.Series("a", [1, 2, None, 4], dtype=pl.Int16) >>> print(s.to_init_repr()) pl.Series("a", [1, 2, None, 4], dtype=pl.Int16) >>> s_from_str_repr = eval(s.to_init_repr()) >>> s_from_str_repr shape: (4,) Series: 'a' [i16] [ 1 2 null 4 ]
- to_list(*, use_pyarrow: bool | None = None) list[Any][source]
 Convert this Series to a Python List. This operation clones data.
- Parameters:
 - use_pyarrow
 Use pyarrow for the conversion.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.to_list() [1, 2, 3] >>> type(s.to_list()) <class 'list'>
- to_numpy( ) ndarray[Any, Any][source]
 Convert this Series to numpy.
This operation may clone data but is completely safe. Note that:
data which is purely numeric AND without null values is not cloned;
floating point
nanvalues can be zero-copied;booleans can’t be zero-copied.
To ensure that no data is cloned, set
zero_copy_only=True.- Parameters:
 - *args
 args will be sent to pyarrow.Array.to_numpy.
- zero_copy_only
 If True, an exception will be raised if the conversion to a numpy array would require copying the underlying data (e.g. in presence of nulls, or for non-primitive types).
- writable
 For numpy arrays created with zero copy (view on the Arrow data), the resulting array is not writable (Arrow data is immutable). By setting this to True, a copy of the array is made to ensure it is writable.
- use_pyarrow
 - 
for the conversion to numpy.
 
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> arr = s.to_numpy() >>> arr array([1, 2, 3], dtype=int64) >>> type(arr) <class 'numpy.ndarray'>
- to_pandas(
 - *args: Any,
 - use_pyarrow_extension_array: bool = False,
 - **kwargs: Any,
 Convert this Series to a pandas Series.
This requires that
pandasandpyarroware installed. This operation clones data, unlessuse_pyarrow_extension_array=True.- Parameters:
 - use_pyarrow_extension_array
 Further operations on this Pandas series, might trigger conversion to numpy. Use PyArrow backed-extension array instead of numpy array for pandas Series. This allows zero copy operations and preservation of nulls values. Further operations on this pandas Series, might trigger conversion to NumPy arrays if that operation is not supported by pyarrow compute functions.
- kwargs
 Arguments will be sent to
pyarrow.Table.to_pandas().
Examples
>>> s1 = pl.Series("a", [1, 2, 3]) >>> s1.to_pandas() 0 1 1 2 2 3 Name: a, dtype: int64 >>> s1.to_pandas(use_pyarrow_extension_array=True) 0 1 1 2 2 3 Name: a, dtype: int64[pyarrow] >>> s2 = pl.Series("b", [1, 2, None, 4]) >>> s2.to_pandas() 0 1.0 1 2.0 2 NaN 3 4.0 Name: b, dtype: float64 >>> s2.to_pandas(use_pyarrow_extension_array=True) 0 1 1 2 2 <NA> 3 4 Name: b, dtype: int64[pyarrow]
- to_physical() Series[source]
 Cast to physical representation of the logical dtype.
polars.datatypes.Date()->polars.datatypes.Int32()polars.datatypes.Datetime()->polars.datatypes.Int64()polars.datatypes.Time()->polars.datatypes.Int64()polars.datatypes.Duration()->polars.datatypes.Int64()polars.datatypes.Categorical()->polars.datatypes.UInt32()List(inner)->List(physical of inner)Other data types will be left unchanged.
Examples
Replicating the pandas pd.Series.factorize method.
>>> s = pl.Series("values", ["a", None, "x", "a"]) >>> s.cast(pl.Categorical).to_physical() shape: (4,) Series: 'values' [u32] [ 0 null 1 0 ]
- top_k(k: int | IntoExprColumn = 5) Series[source]
 Return the
klargest elements.This has time complexity:
\[\begin{split}O(n + k \\log{}n - \frac{k}{2})\end{split}\]- Parameters:
 - k
 Number of elements to return.
See also
Examples
>>> s = pl.Series("a", [2, 5, 1, 4, 3]) >>> s.top_k(3) shape: (3,) Series: 'a' [i64] [ 5 4 3 ]
- unique(*, maintain_order: bool = False) Series[source]
 Get unique elements in series.
- Parameters:
 - maintain_order
 Maintain order of data. This requires more work.
Examples
>>> s = pl.Series("a", [1, 2, 2, 3]) >>> s.unique().sort() shape: (3,) Series: 'a' [i64] [ 1 2 3 ]
- unique_counts() Series[source]
 Return a count of the unique values in the order of appearance.
Examples
>>> s = pl.Series("id", ["a", "b", "b", "c", "c", "c"]) >>> s.unique_counts() shape: (3,) Series: 'id' [u32] [ 1 2 3 ]
- upper_bound() Self[source]
 Return the upper bound of this Series’ dtype as a unit Series.
See also
lower_boundreturn the lower bound of the given Series’ dtype.
Examples
>>> s = pl.Series("s", [-1, 0, 1], dtype=pl.Int8) >>> s.upper_bound() shape: (1,) Series: 's' [i8] [ 127 ]
>>> s = pl.Series("s", [1.0, 2.5, 3.0], dtype=pl.Float64) >>> s.upper_bound() shape: (1,) Series: 's' [f64] [ inf ]
- value_counts(*, sort: bool = False, parallel: bool = False) DataFrame[source]
 Count the occurrences of unique values.
- Parameters:
 - sort
 Sort the output by count in descending order. If set to
False(default), the order of the output is random.- parallel
 Execute the computation in parallel.
Note
This option should likely not be enabled in a group by context, as the computation is already parallelized per group.
- Returns:
 - DataFrame
 Mapping of unique values to their count.
Examples
>>> s = pl.Series("color", ["red", "blue", "red", "green", "blue", "blue"]) >>> s.value_counts() shape: (3, 2) ┌───────┬────────┐ │ color ┆ counts │ │ --- ┆ --- │ │ str ┆ u32 │ ╞═══════╪════════╡ │ red ┆ 2 │ │ green ┆ 1 │ │ blue ┆ 3 │ └───────┴────────┘
Sort the output by count.
shape: (3, 2) ┌───────┬────────┐ │ color ┆ counts │ │ — ┆ — │ │ str ┆ u32 │ ╞═══════╪════════╡ │ blue ┆ 3 │ │ red ┆ 2 │ │ green ┆ 1 │ └───────┴────────┘
- var(ddof: int = 1) float | None[source]
 Get variance of this Series.
- Parameters:
 - ddof
 “Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where N represents the number of elements. By default ddof is 1.
Examples
>>> s = pl.Series("a", [1, 2, 3]) >>> s.var() 1.0
- view(*, ignore_nulls: bool = False) SeriesView[source]
 Get a view into this Series data with a numpy array.
Deprecated since version 0.19.14: This method will be removed in a future version.
This operation doesn’t clone data, but does not include missing values. Don’t use this unless you know what you are doing.
- Parameters:
 - ignore_nulls
 If True then nulls are converted to 0. If False then an Exception is raised if nulls are present.
- zip_with(mask: Series, other: Series) Self[source]
 Take values from self or other based on the given mask.
Where mask evaluates true, take values from self. Where mask evaluates false, take values from other.
- Parameters:
 - mask
 Boolean Series.
- other
 Series of same type.
- Returns:
 - Series
 
Examples
>>> s1 = pl.Series([1, 2, 3, 4, 5]) >>> s2 = pl.Series([5, 4, 3, 2, 1]) >>> s1.zip_with(s1 < s2, s2) shape: (5,) Series: '' [i64] [ 1 2 3 2 1 ] >>> mask = pl.Series([True, False, True, False, True]) >>> s1.zip_with(mask, s2) shape: (5,) Series: '' [i64] [ 1 4 3 2 5 ]