polars.LazyFrame.collect#

LazyFrame.collect(
*,
type_coercion: bool = True,
predicate_pushdown: bool = True,
projection_pushdown: bool = True,
simplify_expression: bool = True,
slice_pushdown: bool = True,
comm_subplan_elim: bool = True,
comm_subexpr_elim: bool = True,
no_optimization: bool = False,
streaming: bool = False,
_eager: bool = False,
) DataFrame[source]#

Materialize this LazyFrame into a DataFrame.

By default, all query optimizations are enabled. Individual optimizations may be disabled by setting the corresponding parameter to False.

Parameters:
type_coercion

Do type coercion optimization.

predicate_pushdown

Do predicate pushdown optimization.

projection_pushdown

Do projection pushdown optimization.

simplify_expression

Run simplify expressions optimization.

slice_pushdown

Slice pushdown optimization.

comm_subplan_elim

Will try to cache branching subplans that occur on self-joins or unions.

comm_subexpr_elim

Common subexpressions will be cached and reused.

no_optimization

Turn off (certain) optimizations.

streaming

Process the query in batches to handle larger-than-memory data. If set to False (default), the entire query is processed in a single batch.

Warning

This functionality is currently in an alpha state.

Note

Use explain() to see if Polars can process the query in streaming mode.

Returns:
DataFrame

See also

fetch

Run the query on the first n rows only for debugging purposes.

explain

Print the query plan that is evaluated with collect.

profile

Collect the LazyFrame and time each node in the computation graph.

polars.collect_all

Collect multiple LazyFrames at the same time.

polars.Config.set_streaming_chunk_size

Set the size of streaming batches.

Examples

>>> lf = pl.LazyFrame(
...     {
...         "a": ["a", "b", "a", "b", "b", "c"],
...         "b": [1, 2, 3, 4, 5, 6],
...         "c": [6, 5, 4, 3, 2, 1],
...     }
... )
>>> lf.group_by("a").agg(pl.all().sum()).collect()  
shape: (3, 3)
┌─────┬─────┬─────┐
│ a   ┆ b   ┆ c   │
│ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 │
╞═════╪═════╪═════╡
│ a   ┆ 4   ┆ 10  │
│ b   ┆ 11  ┆ 10  │
│ c   ┆ 6   ┆ 1   │
└─────┴─────┴─────┘

Collect in streaming mode

>>> lf.group_by("a").agg(pl.all().sum()).collect(
...     streaming=True
... )  
shape: (3, 3)
┌─────┬─────┬─────┐
│ a   ┆ b   ┆ c   │
│ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ i64 │
╞═════╪═════╪═════╡
│ a   ┆ 4   ┆ 10  │
│ b   ┆ 11  ┆ 10  │
│ c   ┆ 6   ┆ 1   │
└─────┴─────┴─────┘