polars.Expr.dt.truncate#
- Expr.dt.truncate(
- every: str | timedelta | Expr,
- offset: str | timedelta | None = None,
- *,
- use_earliest: bool | None = None,
- ambiguous: Ambiguous | Expr | None = None,
Divide the date/datetime range into buckets.
Each date/datetime is mapped to the start of its bucket using the corresponding local datetime. Note that weekly buckets start on Monday. Ambiguous results are localised using the DST offset of the original timestamp - for example, truncating
'2022-11-06 01:30:00 CST'
by'1h'
results in'2022-11-06 01:00:00 CST'
, whereas truncating'2022-11-06 01:30:00 CDT'
by'1h'
results in'2022-11-06 01:00:00 CDT'
.- Parameters:
- every
Every interval start and period length
- offset
Offset the window
- use_earliest
Determine how to deal with ambiguous datetimes:
None
(default): raiseTrue
: use the earliest datetimeFalse
: use the latest datetime
Deprecated since version 0.19.0: Use
ambiguous
instead- ambiguous
Determine how to deal with ambiguous datetimes:
'raise'
(default): raise'earliest'
: use the earliest datetime'latest'
: use the latest datetime
Deprecated since version 0.19.3: This is now auto-inferred, you can safely remove this argument.
- Returns:
Notes
The
every
andoffset
argument are created with the the following string language:1ns (1 nanosecond)
1us (1 microsecond)
1ms (1 millisecond)
1s (1 second)
1m (1 minute)
1h (1 hour)
1d (1 calendar day)
1w (1 calendar week)
1mo (1 calendar month)
1q (1 calendar quarter)
1y (1 calendar year)
These strings can be combined:
3d12h4m25s # 3 days, 12 hours, 4 minutes, and 25 seconds
By “calendar day”, we mean the corresponding time on the next day (which may not be 24 hours, due to daylight savings). Similarly for “calendar week”, “calendar month”, “calendar quarter”, and “calendar year”.
Examples
>>> from datetime import timedelta, datetime >>> df = pl.datetime_range( ... datetime(2001, 1, 1), ... datetime(2001, 1, 2), ... timedelta(minutes=225), ... eager=True, ... ).to_frame() >>> df shape: (7, 1) ┌─────────────────────┐ │ datetime │ │ --- │ │ datetime[μs] │ ╞═════════════════════╡ │ 2001-01-01 00:00:00 │ │ 2001-01-01 03:45:00 │ │ 2001-01-01 07:30:00 │ │ 2001-01-01 11:15:00 │ │ 2001-01-01 15:00:00 │ │ 2001-01-01 18:45:00 │ │ 2001-01-01 22:30:00 │ └─────────────────────┘ >>> df.select(pl.col("datetime").dt.truncate("1h")) shape: (7, 1) ┌─────────────────────┐ │ datetime │ │ --- │ │ datetime[μs] │ ╞═════════════════════╡ │ 2001-01-01 00:00:00 │ │ 2001-01-01 03:00:00 │ │ 2001-01-01 07:00:00 │ │ 2001-01-01 11:00:00 │ │ 2001-01-01 15:00:00 │ │ 2001-01-01 18:00:00 │ │ 2001-01-01 22:00:00 │ └─────────────────────┘ >>> truncate_str = df.select(pl.col("datetime").dt.truncate("1h")) >>> truncate_td = df.select(pl.col("datetime").dt.truncate(timedelta(hours=1))) >>> truncate_str.equals(truncate_td) True
>>> df = pl.datetime_range( ... datetime(2001, 1, 1), datetime(2001, 1, 1, 1), "10m", eager=True ... ).to_frame() >>> df.select( ... "datetime", pl.col("datetime").dt.truncate("30m").alias("truncate") ... ) shape: (7, 2) ┌─────────────────────┬─────────────────────┐ │ datetime ┆ truncate │ │ --- ┆ --- │ │ datetime[μs] ┆ datetime[μs] │ ╞═════════════════════╪═════════════════════╡ │ 2001-01-01 00:00:00 ┆ 2001-01-01 00:00:00 │ │ 2001-01-01 00:10:00 ┆ 2001-01-01 00:00:00 │ │ 2001-01-01 00:20:00 ┆ 2001-01-01 00:00:00 │ │ 2001-01-01 00:30:00 ┆ 2001-01-01 00:30:00 │ │ 2001-01-01 00:40:00 ┆ 2001-01-01 00:30:00 │ │ 2001-01-01 00:50:00 ┆ 2001-01-01 00:30:00 │ │ 2001-01-01 01:00:00 ┆ 2001-01-01 01:00:00 │ └─────────────────────┴─────────────────────┘