Testing#
The testing
module provides a number of functions and helpers for use with unit tests.
Note
The testing
module is not imported by default in order to optimise import speed of
the primary polars
module. Either import polars.testing
and then use that
namespace, or import the specific functions you need from the full module path, e.g.:
from polars.testing import assert_frame_equal, assert_series_equal
Asserts#
Polars provides some standard asserts for use with unit tests:
|
Assert that the left and right frame are equal. |
|
Assert that the left and right frame are not equal. |
|
Assert that the left and right Series are equal. |
|
Assert that the left and right Series are not equal. |
Parametric testing#
See the Hypothesis library for more details about property-based testing, strategies, and library integrations:
Polars primitives#
Polars provides the following hypothesis testing primitives and strategy generators/helpers to make it easy to generate suitable test DataFrames and Series.
Hypothesis strategy for producing polars DataFrames or LazyFrames. |
|
|
Hypothesis strategy for producing polars Series. |
Strategy helpers#
|
Define a column for use with the @dataframes strategy. |
|
Define multiple columns for use with the @dataframes strategy. |
Hypothesis strategy for producing polars List data. |
Profiles#
Several standard/named hypothesis profiles are provided:
fast
: runs 100 iterations.balanced
: runs 1,000 iterations.expensive
: runs 10,000 iterations.
The load/set helper functions allow you to access these profiles directly,
set your preferred profile (default is fast
), or set a custom number
of iterations.
|
Load a named (or custom) hypothesis profile for use with the parametric tests. |
|
Set the env var |
Approximate profile timings:
Running polars’ own parametric unit tests on 0.17.6
against release
and debug builds, on a machine with 12 cores, using xdist -n auto
results in the following timings (these values are indicative only,
and may vary significantly depending on your own hardware setup):
Profile |
Iterations |
Release |
Debug |
---|---|---|---|
|
100 |
~6 secs |
~8 secs |
|
1,000 |
~22 secs |
~30 secs |
|
10,000 |
~3 mins 5 secs |
~4 mins 45 secs |
Examples#
Basic: Create a parametric unit test that will receive a series of
generated DataFrames, each having 5 numeric columns with a 10% chance
of any generated value being null
(this is distinct from NaN
).
from polars.testing.parametric import dataframes
from polars import NUMERIC_DTYPES
from hypothesis import given
@given(
dataframes(
cols=5,
null_probabililty=0.1,
allowed_dtypes=NUMERIC_DTYPES,
)
)
def test_numeric(df):
assert all(df[col].is_numeric() for col in df.columns)
# Example frame:
# ┌──────┬────────┬───────┬────────────┬────────────┐
# │ col0 ┆ col1 ┆ col2 ┆ col3 ┆ col4 │
# │ --- ┆ --- ┆ --- ┆ --- ┆ --- │
# │ u8 ┆ i16 ┆ u16 ┆ i32 ┆ f64 │
# ╞══════╪════════╪═══════╪════════════╪════════════╡
# │ 54 ┆ -29096 ┆ 485 ┆ 2147483647 ┆ -2.8257e14 │
# │ null ┆ 7508 ┆ 37338 ┆ 7264 ┆ 1.5 │
# │ 0 ┆ 321 ┆ null ┆ 16996 ┆ NaN │
# │ 121 ┆ -361 ┆ 63204 ┆ 1 ┆ 1.1443e235 │
# └──────┴────────┴───────┴────────────┴────────────┘
Intermediate: Integrate hypothesis-native strategies into specifically-named columns, generating a series of LazyFrames, with a minimum size of five rows and values that conform to the given strategies:
from polars.testing.parametric import column, dataframes
from hypothesis.strategies import floats, sampled_from, text
from hypothesis import given
from string import ascii_letters, digits
id_chars = ascii_letters + digits
@given(
dataframes(
cols=[
column("id", strategy=text(min_size=4, max_size=4, alphabet=id_chars)),
column("ccy", strategy=sampled_from(["GBP", "EUR", "JPY", "USD"])),
column("price", strategy=floats(min_value=0.0, max_value=1000.0)),
],
min_size=5,
lazy=True,
)
)
def test_price_calculations(lf):
...
print(lf.collect())
# Example frame:
# ┌──────┬─────┬─────────┐
# │ id ┆ ccy ┆ price │
# │ --- ┆ --- ┆ --- │
# │ str ┆ str ┆ f64 │
# ╞══════╪═════╪═════════╡
# │ A101 ┆ GBP ┆ 1.1 │
# │ 8nIn ┆ JPY ┆ 1.5 │
# │ QHoO ┆ EUR ┆ 714.544 │
# │ i0e0 ┆ GBP ┆ 0.0 │
# │ 0000 ┆ USD ┆ 999.0 │
# └──────┴─────┴─────────┘
Advanced: Create and use a List[UInt8]
dtype strategy as a hypothesis
composite
that generates pairs of pairs of small integer values in which the first value in each nested pair
is always less than or equal to the second value:
from polars.testing.parametric import create_list_strategy, dataframes, column
from hypothesis.strategies import composite
from hypothesis import given
@composite
def uint8_pairs(draw, uints=create_list_strategy(pl.UInt8, size=2)):
pairs = list(zip(draw(uints), draw(uints)))
return [sorted(ints) for ints in pairs]
@given(
dataframes(
cols=[
column("colx", strategy=uint8_pairs()),
column("coly", strategy=uint8_pairs()),
column("colz", strategy=uint8_pairs()),
],
size=3,
)
)
def test_miscellaneous(df):
...
# Example frame:
# ┌─────────────────────────┬─────────────────────────┬──────────────────────────┐
# │ colx ┆ coly ┆ colz │
# │ --- ┆ --- ┆ --- │
# │ list[list[i64]] ┆ list[list[i64]] ┆ list[list[i64]] │
# ╞═════════════════════════╪═════════════════════════╪══════════════════════════╡
# │ [[143, 235], [75, 101]] ┆ [[143, 235], [75, 101]] ┆ [[31, 41], [57, 250]] │
# │ [[87, 186], [174, 179]] ┆ [[87, 186], [174, 179]] ┆ [[112, 213], [149, 221]] │
# │ [[23, 85], [7, 86]] ┆ [[23, 85], [7, 86]] ┆ [[22, 255], [27, 28]] │
# └─────────────────────────┴─────────────────────────┴──────────────────────────┘