polars.DataFrame.unstack#

DataFrame.unstack(
step: int,
how: UnstackDirection = 'vertical',
columns: ColumnNameOrSelector | Sequence[ColumnNameOrSelector] | None = None,
fill_values: list[Any] | None = None,
) DataFrame[source]#

Unstack a long table to a wide form without doing an aggregation.

This can be much faster than a pivot, because it can skip the grouping phase.

Parameters:
step

Number of rows in the unstacked frame.

how{ ‘vertical’, ‘horizontal’ }

Direction of the unstack.

columns

Column name(s) or selector(s) to include in the operation. If set to None (default), use all columns.

fill_values

Fill values that don’t fit the new size with this value.

Warning

This functionality is experimental and may be subject to changes without it being considered a breaking change.

Examples

>>> from string import ascii_uppercase
>>> df = pl.DataFrame(
...     {
...         "x": list(ascii_uppercase[0:8]),
...         "y": pl.int_range(1, 9, eager=True),
...     }
... ).with_columns(
...     z=pl.int_ranges(pl.col("y"), pl.col("y") + 2, dtype=pl.UInt8),
... )
>>> df
shape: (8, 3)
┌─────┬─────┬──────────┐
│ x   ┆ y   ┆ z        │
│ --- ┆ --- ┆ ---      │
│ str ┆ i64 ┆ list[u8] │
╞═════╪═════╪══════════╡
│ A   ┆ 1   ┆ [1, 2]   │
│ B   ┆ 2   ┆ [2, 3]   │
│ C   ┆ 3   ┆ [3, 4]   │
│ D   ┆ 4   ┆ [4, 5]   │
│ E   ┆ 5   ┆ [5, 6]   │
│ F   ┆ 6   ┆ [6, 7]   │
│ G   ┆ 7   ┆ [7, 8]   │
│ H   ┆ 8   ┆ [8, 9]   │
└─────┴─────┴──────────┘
>>> df.unstack(step=4, how="vertical")
shape: (4, 6)
┌─────┬─────┬─────┬─────┬──────────┬──────────┐
│ x_0 ┆ x_1 ┆ y_0 ┆ y_1 ┆ z_0      ┆ z_1      │
│ --- ┆ --- ┆ --- ┆ --- ┆ ---      ┆ ---      │
│ str ┆ str ┆ i64 ┆ i64 ┆ list[u8] ┆ list[u8] │
╞═════╪═════╪═════╪═════╪══════════╪══════════╡
│ A   ┆ E   ┆ 1   ┆ 5   ┆ [1, 2]   ┆ [5, 6]   │
│ B   ┆ F   ┆ 2   ┆ 6   ┆ [2, 3]   ┆ [6, 7]   │
│ C   ┆ G   ┆ 3   ┆ 7   ┆ [3, 4]   ┆ [7, 8]   │
│ D   ┆ H   ┆ 4   ┆ 8   ┆ [4, 5]   ┆ [8, 9]   │
└─────┴─────┴─────┴─────┴──────────┴──────────┘
>>> df.unstack(step=2, how="horizontal")
shape: (4, 6)
┌─────┬─────┬─────┬─────┬──────────┬──────────┐
│ x_0 ┆ x_1 ┆ y_0 ┆ y_1 ┆ z_0      ┆ z_1      │
│ --- ┆ --- ┆ --- ┆ --- ┆ ---      ┆ ---      │
│ str ┆ str ┆ i64 ┆ i64 ┆ list[u8] ┆ list[u8] │
╞═════╪═════╪═════╪═════╪══════════╪══════════╡
│ A   ┆ B   ┆ 1   ┆ 2   ┆ [1, 2]   ┆ [2, 3]   │
│ C   ┆ D   ┆ 3   ┆ 4   ┆ [3, 4]   ┆ [4, 5]   │
│ E   ┆ F   ┆ 5   ┆ 6   ┆ [5, 6]   ┆ [6, 7]   │
│ G   ┆ H   ┆ 7   ┆ 8   ┆ [7, 8]   ┆ [8, 9]   │
└─────┴─────┴─────┴─────┴──────────┴──────────┘
>>> import polars.selectors as cs
>>> df.unstack(step=5, columns=cs.numeric(), fill_values=0)
shape: (5, 2)
┌─────┬─────┐
│ y_0 ┆ y_1 │
│ --- ┆ --- │
│ i64 ┆ i64 │
╞═════╪═════╡
│ 1   ┆ 6   │
│ 2   ┆ 7   │
│ 3   ┆ 8   │
│ 4   ┆ 0   │
│ 5   ┆ 0   │
└─────┴─────┘