polars.testing.parametric.column#
- class polars.testing.parametric.column(
 - name: str,
 - dtype: PolarsDataType | None = None,
 - strategy: SearchStrategy[Any] | None = None,
 - null_probability: float | None = None,
 - unique: bool = False,
 Define a column for use with the @dataframes strategy.
- Parameters:
 - namestr
 string column name.
- dtypePolarsDataType
 a recognised polars dtype.
- strategystrategy, optional
 supports overriding the default strategy for the given dtype.
- null_probabilityfloat, optional
 percentage chance (expressed between 0.0 => 1.0) that a generated value is None. this is applied independently of any None values generated by the underlying strategy.
- uniquebool, optional
 flag indicating that all values generated for the column should be unique.
Examples
>>> from hypothesis.strategies import sampled_from >>> from polars.testing.parametric import column >>> >>> column(name="unique_small_ints", dtype=pl.UInt8, unique=True) column(name='unique_small_ints', dtype=UInt8, strategy=None, null_probability=None, unique=True) >>> column(name="ccy", strategy=sampled_from(["GBP", "EUR", "JPY"])) column(name='ccy', dtype=Utf8, strategy=sampled_from(['GBP', 'EUR', 'JPY']), null_probability=None, unique=False)
- __init__(
 - name: str,
 - dtype: PolarsDataType | None = None,
 - strategy: SearchStrategy[Any] | None = None,
 - null_probability: float | None = None,
 - unique: bool = False,
 
Methods
__init__(name[, dtype, strategy, ...])Attributes
dtypenull_probabilitystrategyuniquename