polars.testing.assert_frame_not_equal#
- polars.testing.assert_frame_not_equal(
- left: DataFrame | LazyFrame,
- right: DataFrame | LazyFrame,
- *,
- check_row_order: bool = True,
- check_column_order: bool = True,
- check_dtype: bool = True,
- check_exact: bool = False,
- rtol: float = 1e-05,
- atol: float = 1e-08,
- categorical_as_str: bool = False,
- nans_compare_equal: bool | None = None,
Assert that the left and right frame are not equal.
This function is intended for use in unit tests.
- Parameters:
- left
The first DataFrame or LazyFrame to compare.
- right
The second DataFrame or LazyFrame to compare.
- check_row_order
Require row order to match.
Note
Setting this to
False
requires sorting the data, which will fail on frames that contain unsortable columns.- check_column_order
Require column order to match.
- check_dtype
Require data types to match.
- check_exact
Require data values to match exactly. If set to
False
, values are considered equal when within tolerance of each other (seertol
andatol
). Logical types like dates are always checked exactly.- rtol
Relative tolerance for inexact checking. Fraction of values in
right
.- atol
Absolute tolerance for inexact checking.
- categorical_as_str
Cast categorical columns to string before comparing. Enabling this helps compare columns that do not share the same string cache.
- nans_compare_equal
Consider NaN values to be equal.
Examples
>>> from polars.testing import assert_frame_not_equal >>> df1 = pl.DataFrame({"a": [1, 2, 3]}) >>> df2 = pl.DataFrame({"a": [1, 2, 3]}) >>> assert_frame_not_equal(df1, df2) Traceback (most recent call last): ... AssertionError: frames are equal