polars.Series.value_counts#
- Series.value_counts(*, sort: bool = False, parallel: bool = False) DataFrame [source]#
Count the occurrences of unique values.
- Parameters:
- sort
Sort the output by count in descending order. If set to
False
(default), the order of the output is random.- parallel
Execute the computation in parallel.
Note
This option should likely not be enabled in a group by context, as the computation is already parallelized per group.
- Returns:
- DataFrame
Mapping of unique values to their count.
Examples
>>> s = pl.Series("color", ["red", "blue", "red", "green", "blue", "blue"]) >>> s.value_counts() shape: (3, 2) ┌───────┬────────┐ │ color ┆ counts │ │ --- ┆ --- │ │ str ┆ u32 │ ╞═══════╪════════╡ │ red ┆ 2 │ │ green ┆ 1 │ │ blue ┆ 3 │ └───────┴────────┘
Sort the output by count.
shape: (3, 2) ┌───────┬────────┐ │ color ┆ counts │ │ — ┆ — │ │ str ┆ u32 │ ╞═══════╪════════╡ │ blue ┆ 3 │ │ red ┆ 2 │ │ green ┆ 1 │ └───────┴────────┘