polars.testing.assert_series_equal#
- polars.testing.assert_series_equal(
 - left: Series,
 - right: Series,
 - *,
 - check_dtype: bool = True,
 - check_names: bool = True,
 - check_exact: bool = False,
 - rtol: float = 1e-05,
 - atol: float = 1e-08,
 - categorical_as_str: bool = False,
 - nans_compare_equal: bool | None = None,
 Assert that the left and right Series are equal.
Raises a detailed
AssertionErrorif the Series differ. This function is intended for use in unit tests.- Parameters:
 - left
 The first Series to compare.
- right
 The second Series to compare.
- check_dtype
 Require data types to match.
- check_names
 Require names to match.
- check_exact
 Require data values to match exactly. If set to
False, values are considered equal when within tolerance of each other (seertolandatol). Logical types like dates are always checked exactly.- rtol
 Relative tolerance for inexact checking, given as a fraction of the values in
right.- atol
 Absolute tolerance for inexact checking.
- categorical_as_str
 Cast categorical columns to string before comparing. Enabling this helps compare columns that do not share the same string cache.
- nans_compare_equal
 Consider NaN values to be equal.
Notes
When using pytest, it may be worthwhile to shorten Python traceback printing by passing
--tb=short. The default mode tends to be unhelpfully verbose. More information in the pytest docs.Examples
>>> from polars.testing import assert_series_equal >>> s1 = pl.Series([1, 2, 3]) >>> s2 = pl.Series([1, 5, 3]) >>> assert_series_equal(s1, s2) Traceback (most recent call last): ... AssertionError: Series are different (value mismatch) [left]: [1, 2, 3] [right]: [1, 5, 3]