polars.DataFrame.glimpse#

DataFrame.glimpse(
*,
max_items_per_column: int = 10,
max_colname_length: int = 50,
return_as_string: Literal[False],
) None[source]#
DataFrame.glimpse(
*,
max_items_per_column: int = 10,
max_colname_length: int = 50,
return_as_string: Literal[True],
) str

Return a dense preview of the DataFrame.

The formatting shows one line per column so that wide dataframes display cleanly. Each line shows the column name, the data type, and the first few values.

Parameters:
max_items_per_column

Maximum number of items to show per column.

max_colname_length

Maximum length of the displayed column names; values that exceed this value are truncated with a trailing ellipsis.

return_as_string

If True, return the preview as a string instead of printing to stdout.

See also

describe, head, tail

Examples

>>> from datetime import date
>>> df = pl.DataFrame(
...     {
...         "a": [1.0, 2.8, 3.0],
...         "b": [4, 5, None],
...         "c": [True, False, True],
...         "d": [None, "b", "c"],
...         "e": ["usd", "eur", None],
...         "f": [date(2020, 1, 1), date(2021, 1, 2), date(2022, 1, 1)],
...     }
... )
>>> df.glimpse()
Rows: 3
Columns: 6
$ a  <f64> 1.0, 2.8, 3.0
$ b  <i64> 4, 5, None
$ c <bool> True, False, True
$ d  <str> None, 'b', 'c'
$ e  <str> 'usd', 'eur', None
$ f <date> 2020-01-01, 2021-01-02, 2022-01-01