polars.all#
- polars.all(exprs: Series) bool [source]#
- polars.all(exprs: IntoExpr | Iterable[IntoExpr] | None = None, *more_exprs: IntoExpr) Expr
Either return an expression representing all columns, or evaluate a bitwise AND operation.
If no arguments are passed, this is an alias for
pl.col("*")
. If a single string is passed, this is an alias forpl.col(name).any()
.If a single Series is passed, this is an alias for
Series.any()
. This functionality is deprecated.Otherwise, this function computes the bitwise AND horizontally across multiple columns. This functionality is deprecated, use
pl.all_horizontal
instead.- Parameters:
- exprs
Column(s) to use in the aggregation. Accepts expression input. Strings are parsed as column names, other non-expression inputs are parsed as literals.
- *more_exprs
Additional columns to use in the aggregation, specified as positional arguments.
See also
Examples
Selecting all columns.
>>> df = pl.DataFrame( ... { ... "a": [True, False, True], ... "b": [False, False, False], ... } ... ) >>> df.select(pl.all().sum()) shape: (1, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ u32 ┆ u32 │ ╞═════╪═════╡ │ 2 ┆ 0 │ └─────┴─────┘
Evaluate bitwise AND for a column:
>>> df.select(pl.all("a")) shape: (1, 1) ┌───────┐ │ a │ │ --- │ │ bool │ ╞═══════╡ │ false │ └───────┘