polars.DataFrame.write_delta#
- DataFrame.write_delta(
- target: str | Path | deltalake.DeltaTable,
- *,
- mode: Literal['error', 'append', 'overwrite', 'ignore'] = 'error',
- overwrite_schema: bool = False,
- storage_options: dict[str, str] | None = None,
- delta_write_options: dict[str, Any] | None = None,
Write DataFrame as delta table.
- Parameters:
- target
URI of a table or a DeltaTable object.
- mode{‘error’, ‘append’, ‘overwrite’, ‘ignore’}
How to handle existing data.
If ‘error’, throw an error if the table already exists (default).
If ‘append’, will add new data.
If ‘overwrite’, will replace table with new data.
If ‘ignore’, will not write anything if table already exists.
- overwrite_schema
If True, allows updating the schema of the table.
- storage_options
Extra options for the storage backends supported by deltalake. For cloud storages, this may include configurations for authentication etc.
- delta_write_options
Additional keyword arguments while writing a Delta lake Table. See a list of supported write options here.
- Raises:
- TypeError
If the DataFrame contains unsupported data types.
- ArrowInvalidError
If the DataFrame contains data types that could not be cast to their primitive type.
Notes
The Polars data types
Null
,Categorical
andTime
are not supported by the delta protocol specification and will raise a TypeError.Some other data types are not supported but have an associated primitive type to which they can be cast. This affects the following data types:
Unsigned integers
Datetime
types with millisecond or nanosecond precision
Polars columns are always nullable. To write data to a delta table with non-nullable columns, a custom pyarrow schema has to be passed to the delta_write_options. See the last example below.
Examples
Write a dataframe to the local filesystem as a Delta Lake table.
>>> df = pl.DataFrame( ... { ... "foo": [1, 2, 3, 4, 5], ... "bar": [6, 7, 8, 9, 10], ... "ham": ["a", "b", "c", "d", "e"], ... } ... ) >>> table_path = "/path/to/delta-table/" >>> df.write_delta(table_path)
Append data to an existing Delta Lake table on the local filesystem. Note that this will fail if the schema of the new data does not match the schema of the existing table.
>>> df.write_delta(table_path, mode="append")
Overwrite a Delta Lake table as a new version. If the schemas of the new and old data are the same, setting overwrite_schema is not required.
>>> existing_table_path = "/path/to/delta-table/" >>> df.write_delta( ... existing_table_path, mode="overwrite", overwrite_schema=True ... )
Write a dataframe as a Delta Lake table to a cloud object store like S3.
>>> table_path = "s3://bucket/prefix/to/delta-table/" >>> df.write_delta( ... table_path, ... storage_options={ ... "AWS_REGION": "THE_AWS_REGION", ... "AWS_ACCESS_KEY_ID": "THE_AWS_ACCESS_KEY_ID", ... "AWS_SECRET_ACCESS_KEY": "THE_AWS_SECRET_ACCESS_KEY", ... }, ... )
Write DataFrame as a Delta Lake table with non-nullable columns.
>>> import pyarrow as pa >>> existing_table_path = "/path/to/delta-table/" >>> df.write_delta( ... existing_table_path, ... delta_write_options={ ... "schema": pa.schema([pa.field("foo", pa.int64(), nullable=False)]) ... }, ... )