polars.LazyFrame.groupby_rolling#
- LazyFrame.groupby_rolling(
- index_column: IntoExpr,
- *,
- period: str | timedelta,
- offset: str | timedelta | None = None,
- closed: ClosedInterval = 'right',
- by: IntoExpr | Iterable[IntoExpr] | None = None,
- check_sorted: bool = True,
Create rolling groups based on a time, Int32, or Int64 column.
Different from a
dynamic_groupby
the windows are now determined by the individual values and are not of constant intervals. For constant intervals use groupby_dynamic.If you have a time series
<t_0, t_1, ..., t_n>
, then by default the windows created will be(t_0 - period, t_0]
(t_1 - period, t_1]
…
(t_n - period, t_n]
The period and offset arguments are created either from a timedelta, or by using the following string language:
1ns (1 nanosecond)
1us (1 microsecond)
1ms (1 millisecond)
1s (1 second)
1m (1 minute)
1h (1 hour)
1d (1 calendar day)
1w (1 calendar week)
1mo (1 calendar month)
1q (1 calendar quarter)
1y (1 calendar year)
1i (1 index count)
Or combine them: “3d12h4m25s” # 3 days, 12 hours, 4 minutes, and 25 seconds
Suffix with “_saturating” to indicate that dates too large for their month should saturate at the largest date (e.g. 2022-02-29 -> 2022-02-28) instead of erroring.
By “calendar day”, we mean the corresponding time on the next day (which may not be 24 hours, due to daylight savings). Similarly for “calendar week”, “calendar month”, “calendar quarter”, and “calendar year”.
In case of a groupby_rolling on an integer column, the windows are defined by:
“1i” # length 1
“10i” # length 10
- Parameters:
- index_column
Column used to group based on the time window. Often of type Date/Datetime. This column must be sorted in ascending order (or, if by is specified, then it must be sorted in ascending order within each group).
In case of a rolling groupby on indices, dtype needs to be one of {Int32, Int64}. Note that Int32 gets temporarily cast to Int64, so if performance matters use an Int64 column.
- period
length of the window - must be non-negative
- offset
offset of the window. Default is -period
- closed{‘right’, ‘left’, ‘both’, ‘none’}
Define which sides of the temporal interval are closed (inclusive).
- by
Also group by this column/these columns
- check_sorted
When the
by
argument is given, polars can not check sortedness by the metadata and has to do a full scan on the index column to verify data is sorted. This is expensive. If you are sure the data within the by groups is sorted, you can set this toFalse
. Doing so incorrectly will lead to incorrect output
- Returns:
- LazyGroupBy
Object you can call
.agg
on to aggregate by groups, the result of which will be sorted by index_column (but note that if by columns are passed, it will only be sorted within each by group).
See also
Examples
>>> dates = [ ... "2020-01-01 13:45:48", ... "2020-01-01 16:42:13", ... "2020-01-01 16:45:09", ... "2020-01-02 18:12:48", ... "2020-01-03 19:45:32", ... "2020-01-08 23:16:43", ... ] >>> df = pl.LazyFrame({"dt": dates, "a": [3, 7, 5, 9, 2, 1]}).with_columns( ... pl.col("dt").str.strptime(pl.Datetime).set_sorted() ... ) >>> out = ( ... df.groupby_rolling(index_column="dt", period="2d") ... .agg( ... [ ... pl.sum("a").alias("sum_a"), ... pl.min("a").alias("min_a"), ... pl.max("a").alias("max_a"), ... ] ... ) ... .collect() ... ) >>> assert out["sum_a"].to_list() == [3, 10, 15, 24, 11, 1] >>> assert out["max_a"].to_list() == [3, 7, 7, 9, 9, 1] >>> assert out["min_a"].to_list() == [3, 3, 3, 3, 2, 1] >>> out shape: (6, 4) ┌─────────────────────┬───────┬───────┬───────┐ │ dt ┆ sum_a ┆ min_a ┆ max_a │ │ --- ┆ --- ┆ --- ┆ --- │ │ datetime[μs] ┆ i64 ┆ i64 ┆ i64 │ ╞═════════════════════╪═══════╪═══════╪═══════╡ │ 2020-01-01 13:45:48 ┆ 3 ┆ 3 ┆ 3 │ │ 2020-01-01 16:42:13 ┆ 10 ┆ 3 ┆ 7 │ │ 2020-01-01 16:45:09 ┆ 15 ┆ 3 ┆ 7 │ │ 2020-01-02 18:12:48 ┆ 24 ┆ 3 ┆ 9 │ │ 2020-01-03 19:45:32 ┆ 11 ┆ 2 ┆ 9 │ │ 2020-01-08 23:16:43 ┆ 1 ┆ 1 ┆ 1 │ └─────────────────────┴───────┴───────┴───────┘