LazyFrame#
This page gives an overview of all public LazyFrame methods.
- class polars.LazyFrame(
- data: FrameInitTypes | None = None,
- schema: SchemaDefinition | None = None,
- *,
- schema_overrides: SchemaDict | None = None,
- orient: Orientation | None = None,
- infer_schema_length: int | None = 100,
- nan_to_null: bool = False,
Representation of a Lazy computation graph/query against a DataFrame.
This allows for whole-query optimisation in addition to parallelism, and is the preferred (and highest-performance) mode of operation for polars.
- Parameters:
- datadict, Sequence, ndarray, Series, or pandas.DataFrame
Two-dimensional data in various forms; dict input must contain Sequences, Generators, or a
range
. Sequence may contain Series or other Sequences.- schemaSequence of str, (str,DataType) pairs, or a {str:DataType,} dict
The DataFrame schema may be declared in several ways:
As a dict of {name:type} pairs; if type is None, it will be auto-inferred.
As a list of column names; in this case types are automatically inferred.
As a list of (name,type) pairs; this is equivalent to the dictionary form.
If you supply a list of column names that does not match the names in the underlying data, the names given here will overwrite them. The number of names given in the schema should match the underlying data dimensions.
- schema_overridesdict, default None
Support type specification or override of one or more columns; note that any dtypes inferred from the schema param will be overridden. underlying data, the names given here will overwrite them.
The number of entries in the schema should match the underlying data dimensions, unless a sequence of dictionaries is being passed, in which case a _partial_ schema can be declared to prevent specific fields from being loaded.
- orient{‘col’, ‘row’}, default None
Whether to interpret two-dimensional data as columns or as rows. If None, the orientation is inferred by matching the columns and data dimensions. If this does not yield conclusive results, column orientation is used.
- infer_schema_lengthint, default None
Maximum number of rows to read for schema inference; only applies if the input data is a sequence or generator of rows; other input is read as-is.
- nan_to_nullbool, default False
If the data comes from one or more numpy arrays, can optionally convert input data np.nan values to null instead. This is a no-op for all other input data.
Notes
Initialising
LazyFrame(...)
directly is equivalent toDataFrame(...).lazy()
.Examples
Constructing a LazyFrame directly from a dictionary:
>>> data = {"a": [1, 2], "b": [3, 4]} >>> lf = pl.LazyFrame(data) >>> lf.collect() shape: (2, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 3 │ │ 2 ┆ 4 │ └─────┴─────┘
Notice that the dtypes are automatically inferred as polars Int64:
>>> lf.dtypes [Int64, Int64]
To specify a more detailed/specific frame schema you can supply the schema parameter with a dictionary of (name,dtype) pairs…
>>> data = {"col1": [0, 2], "col2": [3, 7]} >>> lf2 = pl.LazyFrame(data, schema={"col1": pl.Float32, "col2": pl.Int64}) >>> lf2.collect() shape: (2, 2) ┌──────┬──────┐ │ col1 ┆ col2 │ │ --- ┆ --- │ │ f32 ┆ i64 │ ╞══════╪══════╡ │ 0.0 ┆ 3 │ │ 2.0 ┆ 7 │ └──────┴──────┘
…a sequence of (name,dtype) pairs…
>>> data = {"col1": [1, 2], "col2": [3, 4]} >>> lf3 = pl.LazyFrame(data, schema=[("col1", pl.Float32), ("col2", pl.Int64)]) >>> lf3.collect() shape: (2, 2) ┌──────┬──────┐ │ col1 ┆ col2 │ │ --- ┆ --- │ │ f32 ┆ i64 │ ╞══════╪══════╡ │ 1.0 ┆ 3 │ │ 2.0 ┆ 4 │ └──────┴──────┘
…or a list of typed Series.
>>> data = [ ... pl.Series("col1", [1, 2], dtype=pl.Float32), ... pl.Series("col2", [3, 4], dtype=pl.Int64), ... ] >>> lf4 = pl.LazyFrame(data) >>> lf4.collect() shape: (2, 2) ┌──────┬──────┐ │ col1 ┆ col2 │ │ --- ┆ --- │ │ f32 ┆ i64 │ ╞══════╪══════╡ │ 1.0 ┆ 3 │ │ 2.0 ┆ 4 │ └──────┴──────┘
Constructing a LazyFrame from a numpy ndarray, specifying column names:
>>> import numpy as np >>> data = np.array([(1, 2), (3, 4)], dtype=np.int64) >>> lf5 = pl.LazyFrame(data, schema=["a", "b"], orient="col") >>> lf5.collect() shape: (2, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 3 │ │ 2 ┆ 4 │ └─────┴─────┘
Constructing a LazyFrame from a list of lists, row orientation inferred:
>>> data = [[1, 2, 3], [4, 5, 6]] >>> lf6 = pl.LazyFrame(data, schema=["a", "b", "c"]) >>> lf6.collect() shape: (2, 3) ┌─────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╡ │ 1 ┆ 2 ┆ 3 │ │ 4 ┆ 5 ┆ 6 │ └─────┴─────┴─────┘
Methods:
approx_n_unique
Approximate count of unique values.
Return the k smallest elements.
Cache the result once the execution of the physical plan hits this node.
Create an empty copy of the current LazyFrame, with zero to 'n' rows.
Very cheap deepcopy/clone.
Collect into a DataFrame.
Read a logical plan from a JSON file to construct a LazyFrame.
Remove columns from the dataframe.
Drop all rows that contain null values.
Create a string representation of the query plan.
Explode the dataframe to long format by exploding the given columns.
Collect a small number of rows for debugging purposes.
Fill floating point NaN values.
Fill null values using the specified value or strategy.
Filter the rows in the LazyFrame based on a predicate expression.
Get the first row of the DataFrame.
Read a logical plan from a JSON string to construct a LazyFrame.
Start a groupby operation.
Group based on a time value (or index value of type Int32, Int64).
Create rolling groups based on a time, Int32, or Int64 column.
Get the first n rows.
Inspect a node in the computation graph.
Interpolate intermediate values.
Add a join operation to the Logical Plan.
Perform an asof join.
Get the last row of the DataFrame.
Return lazy representation, i.e. itself.
Get the first n rows.
Apply a custom function.
Aggregate the columns in the LazyFrame to their maximum value.
Aggregate the columns in the LazyFrame to their mean value.
Aggregate the columns in the LazyFrame to their median value.
Unpivot a DataFrame from wide to long format.
Take two sorted DataFrames and merge them by the sorted key.
Aggregate the columns in the LazyFrame to their minimum value.
Aggregate the columns in the LazyFrame as the sum of their null value count.
Offers a structured way to apply a sequence of user-defined functions (UDFs).
Profile a LazyFrame.
Aggregate the columns in the LazyFrame to their quantile value.
Read a logical plan from a JSON file to construct a LazyFrame.
Rename column names.
Reverse the DataFrame.
Select columns from this LazyFrame.
Select columns from this LazyFrame.
Serialize the logical plan of this LazyFrame to a file or string in JSON format.
Indicate that one or multiple columns are sorted.
Shift the values by a given period.
Shift the values by a given period and fill the resulting null values.
Show a plot of the query plan.
Persists a LazyFrame at the provided path.
Persists a LazyFrame at the provided path.
Get a slice of this DataFrame.
Sort the dataframe by the given columns.
Aggregate the columns in the LazyFrame to their standard deviation value.
Aggregate the columns in the LazyFrame to their sum value.
Get the last n rows.
Take every nth row in the LazyFrame and return as a new LazyFrame.
Return the k largest elements.
Drop duplicate rows from this dataframe.
Decompose struct columns into separate columns for each of their fields.
Update the values in this LazyFrame with the non-null values in other.
Aggregate the columns in the LazyFrame to their variance value.
Add columns to this DataFrame.
Add columns to this DataFrame.
Add an external context to the computation graph.
Add a column at index 0 that counts the rows.
Attributes:
Get column names.
Get dtypes of columns in LazyFrame.
Get a dict[column name, DataType].
Get the width of the LazyFrame.
- approx_n_unique() Self [source]
Approximate count of unique values.
This is done using the HyperLogLog++ algorithm for cardinality estimation.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 2, 3, 4], ... "b": [1, 2, 1, 1], ... } ... ) >>> lf.approx_n_unique().collect() shape: (1, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ u32 ┆ u32 │ ╞═════╪═════╡ │ 4 ┆ 2 │ └─────┴─────┘
- bottom_k(
- k: int,
- *,
- by: IntoExpr | Iterable[IntoExpr],
- descending: bool | Sequence[bool] = False,
- nulls_last: bool = False,
- maintain_order: bool = False,
Return the k smallest elements.
If ‘descending=True` the largest elements will be given.
- Parameters:
- k
Number of rows to return.
- by
Column(s) included in sort order. Accepts expression input. Strings are parsed as column names.
- descending
Return the ‘k’ smallest. Top-k by multiple columns can be specified per column by passing a sequence of booleans.
- nulls_last
Place null values last.
- maintain_order
Whether the order should be maintained if elements are equal. Note that if true streaming is not possible and performance might be worse since this requires a stable search.
See also
Examples
>>> lf = pl.LazyFrame( ... { ... "a": ["a", "b", "a", "b", "b", "c"], ... "b": [2, 1, 1, 3, 2, 1], ... } ... )
Get the rows which contain the 4 smallest values in column b.
>>> lf.bottom_k(4, by="b").collect() shape: (4, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ str ┆ i64 │ ╞═════╪═════╡ │ b ┆ 1 │ │ a ┆ 1 │ │ c ┆ 1 │ │ a ┆ 2 │ └─────┴─────┘
Get the rows which contain the 4 smallest values when sorting on column a and b.
>>> lf.bottom_k(4, by=["a", "b"]).collect() shape: (4, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ str ┆ i64 │ ╞═════╪═════╡ │ a ┆ 1 │ │ a ┆ 2 │ │ b ┆ 1 │ │ b ┆ 2 │ └─────┴─────┘
- cache() Self [source]
Cache the result once the execution of the physical plan hits this node.
- clear(n: int = 0) LazyFrame [source]
Create an empty copy of the current LazyFrame, with zero to ‘n’ rows.
Returns a copy with an identical schema but no data.
- Parameters:
- n
Number of (empty) rows to return in the cleared frame.
See also
clone
Cheap deepcopy/clone.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [None, 2, 3, 4], ... "b": [0.5, None, 2.5, 13], ... "c": [True, True, False, None], ... } ... ) >>> lf.clear().fetch() shape: (0, 3) ┌─────┬─────┬──────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ bool │ ╞═════╪═════╪══════╡ └─────┴─────┴──────┘
>>> lf.clear(2).fetch() shape: (2, 3) ┌──────┬──────┬──────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ bool │ ╞══════╪══════╪══════╡ │ null ┆ null ┆ null │ │ null ┆ null ┆ null │ └──────┴──────┴──────┘
- clone() Self [source]
Very cheap deepcopy/clone.
See also
clear
Create an empty copy of the current LazyFrame, with identical schema but no data.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [None, 2, 3, 4], ... "b": [0.5, None, 2.5, 13], ... "c": [True, True, False, None], ... } ... ) >>> lf.clone() <LazyFrame [3 cols, {"a": Int64 … "c": Boolean}] at ...>
- collect(
- *,
- type_coercion: bool = True,
- predicate_pushdown: bool = True,
- projection_pushdown: bool = True,
- simplify_expression: bool = True,
- no_optimization: bool = False,
- slice_pushdown: bool = True,
- comm_subplan_elim: bool = True,
- comm_subexpr_elim: bool = True,
- streaming: bool = False,
Collect into a DataFrame.
Note: use
fetch()
if you want to run your query on the first n rows only. This can be a huge time saver in debugging queries.- Parameters:
- type_coercion
Do type coercion optimization.
- predicate_pushdown
Do predicate pushdown optimization.
- projection_pushdown
Do projection pushdown optimization.
- simplify_expression
Run simplify expressions optimization.
- no_optimization
Turn off (certain) optimizations.
- slice_pushdown
Slice pushdown optimization.
- comm_subplan_elim
Will try to cache branching subplans that occur on self-joins or unions.
- comm_subexpr_elim
Common subexpressions will be cached and reused.
- streaming
Run parts of the query in a streaming fashion (this is in an alpha state)
- Returns:
- DataFrame
Examples
>>> lf = pl.LazyFrame( ... { ... "a": ["a", "b", "a", "b", "b", "c"], ... "b": [1, 2, 3, 4, 5, 6], ... "c": [6, 5, 4, 3, 2, 1], ... } ... ) >>> lf.groupby("a", maintain_order=True).agg(pl.all().sum()).collect() shape: (3, 3) ┌─────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╡ │ a ┆ 4 ┆ 10 │ │ b ┆ 11 ┆ 10 │ │ c ┆ 6 ┆ 1 │ └─────┴─────┴─────┘
- property columns: list[str][source]
Get column names.
Examples
>>> lf = pl.LazyFrame( ... { ... "foo": [1, 2, 3], ... "bar": [6, 7, 8], ... "ham": ["a", "b", "c"], ... } ... ).select(["foo", "bar"]) >>> lf.columns ['foo', 'bar']
- classmethod deserialize(source: str | Path | IOBase) Self [source]
Read a logical plan from a JSON file to construct a LazyFrame.
- Parameters:
- source
Path to a file or a file-like object (by file-like object, we refer to objects that have a
read()
method, such as a file handler (e.g. via builtinopen
function) orBytesIO
).
See also
Examples
>>> import io >>> lf = pl.LazyFrame({"a": [1, 2, 3]}).sum() >>> json = lf.serialize() >>> pl.LazyFrame.deserialize(io.StringIO(json)).collect() shape: (1, 1) ┌─────┐ │ a │ │ --- │ │ i64 │ ╞═════╡ │ 6 │ └─────┘
- drop(
- columns: ColumnNameOrSelector | Collection[ColumnNameOrSelector],
- *more_columns: ColumnNameOrSelector,
Remove columns from the dataframe.
- Parameters:
- columns
Name of the column(s) that should be removed from the dataframe.
- *more_columns
Additional columns to drop, specified as positional arguments.
Examples
Drop a single column by passing the name of that column.
>>> lf = pl.LazyFrame( ... { ... "foo": [1, 2, 3], ... "bar": [6.0, 7.0, 8.0], ... "ham": ["a", "b", "c"], ... } ... ) >>> lf.drop("ham").collect() shape: (3, 2) ┌─────┬─────┐ │ foo ┆ bar │ │ --- ┆ --- │ │ i64 ┆ f64 │ ╞═════╪═════╡ │ 1 ┆ 6.0 │ │ 2 ┆ 7.0 │ │ 3 ┆ 8.0 │ └─────┴─────┘
Drop multiple columns by passing a selector.
>>> import polars.selectors as cs >>> lf.drop(cs.numeric()).collect() shape: (3, 1) ┌─────┐ │ ham │ │ --- │ │ str │ ╞═════╡ │ a │ │ b │ │ c │ └─────┘
Use positional arguments to drop multiple columns.
>>> lf.drop("foo", "ham").collect() shape: (3, 1) ┌─────┐ │ bar │ │ --- │ │ f64 │ ╞═════╡ │ 6.0 │ │ 7.0 │ │ 8.0 │ └─────┘
- drop_nulls(
- subset: ColumnNameOrSelector | Collection[ColumnNameOrSelector] | None = None,
Drop all rows that contain null values.
Returns a new LazyFrame.
- Parameters:
- subset
Column name(s) for which null values are considered. If set to
None
(default), use all columns.
Examples
>>> lf = pl.LazyFrame( ... { ... "foo": [1, 2, 3], ... "bar": [6, None, 8], ... "ham": ["a", "b", None], ... } ... )
The default behavior of this method is to drop rows where any single value of the row is null.
>>> lf.drop_nulls().collect() shape: (1, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ ham │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ str │ ╞═════╪═════╪═════╡ │ 1 ┆ 6 ┆ a │ └─────┴─────┴─────┘
This behaviour can be constrained to consider only a subset of columns, as defined by name or with a selector. For example, dropping rows if there is a null in any of the integer columns:
>>> import polars.selectors as cs >>> lf.drop_nulls(subset=cs.integer()).collect() shape: (2, 3) ┌─────┬─────┬──────┐ │ foo ┆ bar ┆ ham │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ str │ ╞═════╪═════╪══════╡ │ 1 ┆ 6 ┆ a │ │ 3 ┆ 8 ┆ null │ └─────┴─────┴──────┘
This method drops a row if any single value of the row is null.
Below are some example snippets that show how you could drop null values based on other conditions:
>>> lf = pl.LazyFrame( ... { ... "a": [None, None, None, None], ... "b": [1, 2, None, 1], ... "c": [1, None, None, 1], ... } ... ) >>> lf.collect() shape: (4, 3) ┌──────┬──────┬──────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ f32 ┆ i64 ┆ i64 │ ╞══════╪══════╪══════╡ │ null ┆ 1 ┆ 1 │ │ null ┆ 2 ┆ null │ │ null ┆ null ┆ null │ │ null ┆ 1 ┆ 1 │ └──────┴──────┴──────┘
Drop a row only if all values are null:
>>> lf.filter(~pl.all_horizontal(pl.all().is_null())).collect() shape: (3, 3) ┌──────┬─────┬──────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ f32 ┆ i64 ┆ i64 │ ╞══════╪═════╪══════╡ │ null ┆ 1 ┆ 1 │ │ null ┆ 2 ┆ null │ │ null ┆ 1 ┆ 1 │ └──────┴─────┴──────┘
- property dtypes: list[PolarsDataType][source]
Get dtypes of columns in LazyFrame.
See also
schema
Returns a {colname:dtype} mapping.
Examples
>>> lf = pl.LazyFrame( ... { ... "foo": [1, 2, 3], ... "bar": [6.0, 7.0, 8.0], ... "ham": ["a", "b", "c"], ... } ... ) >>> lf.dtypes [Int64, Float64, Utf8]
- explain(
- *,
- optimized: bool = True,
- type_coercion: bool = True,
- predicate_pushdown: bool = True,
- projection_pushdown: bool = True,
- simplify_expression: bool = True,
- slice_pushdown: bool = True,
- comm_subplan_elim: bool = True,
- comm_subexpr_elim: bool = True,
- streaming: bool = False,
Create a string representation of the query plan.
Different optimizations can be turned on or off.
- Parameters:
- optimized
Return an optimized query plan. Defaults to
False
. If this is set toTrue
the subsequent optimization flags control which optimizations run.- type_coercion
Do type coercion optimization.
- predicate_pushdown
Do predicate pushdown optimization.
- projection_pushdown
Do projection pushdown optimization.
- simplify_expression
Run simplify expressions optimization.
- slice_pushdown
Slice pushdown optimization.
- comm_subplan_elim
Will try to cache branching subplans that occur on self-joins or unions.
- comm_subexpr_elim
Common subexpressions will be cached and reused.
- streaming
Run parts of the query in a streaming fashion (this is in an alpha state)
Examples
>>> lf = pl.LazyFrame( ... { ... "a": ["a", "b", "a", "b", "b", "c"], ... "b": [1, 2, 3, 4, 5, 6], ... "c": [6, 5, 4, 3, 2, 1], ... } ... ) >>> lf.groupby("a", maintain_order=True).agg(pl.all().sum()).sort( ... "a" ... ).explain()
- explode( ) Self [source]
Explode the dataframe to long format by exploding the given columns.
- Parameters:
- columns
Column names, expressions, or a selector defining them. The underlying columns being exploded must be of List or Utf8 datatype.
- *more_columns
Additional names of columns to explode, specified as positional arguments.
Examples
>>> lf = pl.LazyFrame( ... { ... "letters": ["a", "a", "b", "c"], ... "numbers": [[1], [2, 3], [4, 5], [6, 7, 8]], ... } ... ) >>> lf.explode("numbers").collect() shape: (8, 2) ┌─────────┬─────────┐ │ letters ┆ numbers │ │ --- ┆ --- │ │ str ┆ i64 │ ╞═════════╪═════════╡ │ a ┆ 1 │ │ a ┆ 2 │ │ a ┆ 3 │ │ b ┆ 4 │ │ b ┆ 5 │ │ c ┆ 6 │ │ c ┆ 7 │ │ c ┆ 8 │ └─────────┴─────────┘
- fetch(
- n_rows: int = 500,
- *,
- type_coercion: bool = True,
- predicate_pushdown: bool = True,
- projection_pushdown: bool = True,
- simplify_expression: bool = True,
- no_optimization: bool = False,
- slice_pushdown: bool = True,
- comm_subplan_elim: bool = True,
- comm_subexpr_elim: bool = True,
- streaming: bool = False,
Collect a small number of rows for debugging purposes.
Fetch is like a
collect()
operation, but it overwrites the number of rows read by every scan operation. This is a utility that helps debug a query on a smaller number of rows.Note that the fetch does not guarantee the final number of rows in the DataFrame. Filter, join operations and a lower number of rows available in the scanned file influence the final number of rows.
- Parameters:
- n_rows
Collect n_rows from the data sources.
- type_coercion
Run type coercion optimization.
- predicate_pushdown
Run predicate pushdown optimization.
- projection_pushdown
Run projection pushdown optimization.
- simplify_expression
Run simplify expressions optimization.
- no_optimization
Turn off optimizations.
- slice_pushdown
Slice pushdown optimization
- comm_subplan_elim
Will try to cache branching subplans that occur on self-joins or unions.
- comm_subexpr_elim
Common subexpressions will be cached and reused.
- streaming
Run parts of the query in a streaming fashion (this is in an alpha state)
- Returns:
- DataFrame
Examples
>>> lf = pl.LazyFrame( ... { ... "a": ["a", "b", "a", "b", "b", "c"], ... "b": [1, 2, 3, 4, 5, 6], ... "c": [6, 5, 4, 3, 2, 1], ... } ... ) >>> lf.groupby("a", maintain_order=True).agg(pl.all().sum()).fetch(2) shape: (2, 3) ┌─────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╡ │ a ┆ 1 ┆ 6 │ │ b ┆ 2 ┆ 5 │ └─────┴─────┴─────┘
- fill_nan(value: int | float | Expr | None) Self [source]
Fill floating point NaN values.
- Parameters:
- value
Value to fill the NaN values with.
Warning
Note that floating point NaN (Not a Number) are not missing values! To replace missing values, use
fill_null()
instead.Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1.5, 2, float("NaN"), 4], ... "b": [0.5, 4, float("NaN"), 13], ... } ... ) >>> lf.fill_nan(99).collect() shape: (4, 2) ┌──────┬──────┐ │ a ┆ b │ │ --- ┆ --- │ │ f64 ┆ f64 │ ╞══════╪══════╡ │ 1.5 ┆ 0.5 │ │ 2.0 ┆ 4.0 │ │ 99.0 ┆ 99.0 │ │ 4.0 ┆ 13.0 │ └──────┴──────┘
- fill_null(
- value: Any | None = None,
- strategy: FillNullStrategy | None = None,
- limit: int | None = None,
- *,
- matches_supertype: bool = True,
Fill null values using the specified value or strategy.
- Parameters:
- value
Value used to fill null values.
- strategy{None, ‘forward’, ‘backward’, ‘min’, ‘max’, ‘mean’, ‘zero’, ‘one’}
Strategy used to fill null values.
- limit
Number of consecutive null values to fill when using the ‘forward’ or ‘backward’ strategy.
- matches_supertype
Fill all matching supertypes of the fill
value
literal.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 2, None, 4], ... "b": [0.5, 4, None, 13], ... } ... ) >>> lf.fill_null(99).collect() shape: (4, 2) ┌─────┬──────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ f64 │ ╞═════╪══════╡ │ 1 ┆ 0.5 │ │ 2 ┆ 4.0 │ │ 99 ┆ 99.0 │ │ 4 ┆ 13.0 │ └─────┴──────┘ >>> lf.fill_null(strategy="forward").collect() shape: (4, 2) ┌─────┬──────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ f64 │ ╞═════╪══════╡ │ 1 ┆ 0.5 │ │ 2 ┆ 4.0 │ │ 2 ┆ 4.0 │ │ 4 ┆ 13.0 │ └─────┴──────┘
>>> lf.fill_null(strategy="max").collect() shape: (4, 2) ┌─────┬──────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ f64 │ ╞═════╪══════╡ │ 1 ┆ 0.5 │ │ 2 ┆ 4.0 │ │ 4 ┆ 13.0 │ │ 4 ┆ 13.0 │ └─────┴──────┘
>>> lf.fill_null(strategy="zero").collect() shape: (4, 2) ┌─────┬──────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ f64 │ ╞═════╪══════╡ │ 1 ┆ 0.5 │ │ 2 ┆ 4.0 │ │ 0 ┆ 0.0 │ │ 4 ┆ 13.0 │ └─────┴──────┘
- filter(predicate: IntoExpr) Self [source]
Filter the rows in the LazyFrame based on a predicate expression.
- Parameters:
- predicate
Expression that evaluates to a boolean Series.
Examples
>>> lf = pl.LazyFrame( ... { ... "foo": [1, 2, 3], ... "bar": [6, 7, 8], ... "ham": ["a", "b", "c"], ... } ... )
Filter on one condition:
>>> lf.filter(pl.col("foo") < 3).collect() shape: (2, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ ham │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ str │ ╞═════╪═════╪═════╡ │ 1 ┆ 6 ┆ a │ │ 2 ┆ 7 ┆ b │ └─────┴─────┴─────┘
Filter on multiple conditions:
>>> lf.filter((pl.col("foo") < 3) & (pl.col("ham") == "a")).collect() shape: (1, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ ham │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ str │ ╞═════╪═════╪═════╡ │ 1 ┆ 6 ┆ a │ └─────┴─────┴─────┘
Filter on an OR condition:
>>> lf.filter((pl.col("foo") == 1) | (pl.col("ham") == "c")).collect() shape: (2, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ ham │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ str │ ╞═════╪═════╪═════╡ │ 1 ┆ 6 ┆ a │ │ 3 ┆ 8 ┆ c │ └─────┴─────┴─────┘
- first() Self [source]
Get the first row of the DataFrame.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 3, 5], ... "b": [2, 4, 6], ... } ... ) >>> lf.first().collect() shape: (1, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 2 │ └─────┴─────┘
- classmethod from_json(json: str) Self [source]
Read a logical plan from a JSON string to construct a LazyFrame.
Deprecated since version 0.18.12: This method is deprecated. Convert the JSON string to
StringIO
and then useLazyFrame.deserialize
.- Parameters:
- json
String in JSON format.
See also
- groupby(
- by: IntoExpr | Iterable[IntoExpr],
- *more_by: IntoExpr,
- maintain_order: bool = False,
Start a groupby operation.
- Parameters:
- by
Column(s) to group by. Accepts expression input. Strings are parsed as column names.
- *more_by
Additional columns to group by, specified as positional arguments.
- maintain_order
Ensure that the order of the groups is consistent with the input data. This is slower than a default groupby. Settings this to
True
blocks the possibility to run on the streaming engine.
Examples
Group by one column and call
agg
to compute the grouped sum of another column.>>> lf = pl.LazyFrame( ... { ... "a": ["a", "b", "a", "b", "c"], ... "b": [1, 2, 1, 3, 3], ... "c": [5, 4, 3, 2, 1], ... } ... ) >>> lf.groupby("a").agg(pl.col("b").sum()).collect() shape: (3, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ str ┆ i64 │ ╞═════╪═════╡ │ a ┆ 2 │ │ b ┆ 5 │ │ c ┆ 3 │ └─────┴─────┘
Set
maintain_order=True
to ensure the order of the groups is consistent with the input.>>> lf.groupby("a", maintain_order=True).agg(pl.col("c")).collect() shape: (3, 2) ┌─────┬───────────┐ │ a ┆ c │ │ --- ┆ --- │ │ str ┆ list[i64] │ ╞═════╪═══════════╡ │ a ┆ [5, 3] │ │ b ┆ [4, 2] │ │ c ┆ [1] │ └─────┴───────────┘
Group by multiple columns by passing a list of column names.
>>> lf.groupby(["a", "b"]).agg(pl.max("c")).collect() shape: (4, 3) ┌─────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╡ │ a ┆ 1 ┆ 5 │ │ b ┆ 2 ┆ 4 │ │ b ┆ 3 ┆ 2 │ │ c ┆ 3 ┆ 1 │ └─────┴─────┴─────┘
Or use positional arguments to group by multiple columns in the same way. Expressions are also accepted.
>>> lf.groupby("a", pl.col("b") // 2).agg( ... pl.col("c").mean() ... ).collect() shape: (3, 3) ┌─────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ f64 │ ╞═════╪═════╪═════╡ │ a ┆ 0 ┆ 4.0 │ │ b ┆ 1 ┆ 3.0 │ │ c ┆ 1 ┆ 1.0 │ └─────┴─────┴─────┘
- groupby_dynamic(
- index_column: IntoExpr,
- *,
- every: str | timedelta,
- period: str | timedelta | None = None,
- offset: str | timedelta | None = None,
- truncate: bool = True,
- include_boundaries: bool = False,
- closed: ClosedInterval = 'left',
- by: IntoExpr | Iterable[IntoExpr] | None = None,
- start_by: StartBy = 'window',
- check_sorted: bool = True,
Group based on a time value (or index value of type Int32, Int64).
Time windows are calculated and rows are assigned to windows. Different from a normal groupby is that a row can be member of multiple groups. The time/index window could be seen as a rolling window, with a window size determined by dates/times/values instead of slots in the DataFrame.
A window is defined by:
every: interval of the window
period: length of the window
offset: offset of the window
The every, period and offset arguments are created with the following string language:
1ns (1 nanosecond)
1us (1 microsecond)
1ms (1 millisecond)
1s (1 second)
1m (1 minute)
1h (1 hour)
1d (1 calendar day)
1w (1 calendar week)
1mo (1 calendar month)
1q (1 calendar quarter)
1y (1 calendar year)
1i (1 index count)
Or combine them: “3d12h4m25s” # 3 days, 12 hours, 4 minutes, and 25 seconds
Suffix with “_saturating” to indicate that dates too large for their month should saturate at the largest date (e.g. 2022-02-29 -> 2022-02-28) instead of erroring.
By “calendar day”, we mean the corresponding time on the next day (which may not be 24 hours, due to daylight savings). Similarly for “calendar week”, “calendar month”, “calendar quarter”, and “calendar year”.
In case of a groupby_dynamic on an integer column, the windows are defined by:
“1i” # length 1
“10i” # length 10
Warning
The index column must be sorted in ascending order. If by is passed, then the index column must be sorted in ascending order within each group.
- Parameters:
- index_column
Column used to group based on the time window. Often of type Date/Datetime. This column must be sorted in ascending order (or, if by is specified, then it must be sorted in ascending order within each group).
In case of a dynamic groupby on indices, dtype needs to be one of {Int32, Int64}. Note that Int32 gets temporarily cast to Int64, so if performance matters use an Int64 column.
- every
interval of the window
- period
length of the window, if None it is equal to ‘every’
- offset
offset of the window if None and period is None it will be equal to negative every
- truncate
truncate the time value to the window lower bound
- include_boundaries
Add the lower and upper bound of the window to the “_lower_bound” and “_upper_bound” columns. This will impact performance because it’s harder to parallelize
- closed{‘right’, ‘left’, ‘both’, ‘none’}
Define which sides of the temporal interval are closed (inclusive).
- by
Also group by this column/these columns
- start_by{‘window’, ‘datapoint’, ‘monday’, ‘tuesday’, ‘wednesday’, ‘thursday’, ‘friday’, ‘saturday’, ‘sunday’}
The strategy to determine the start of the first window by.
‘window’: Truncate the start of the window with the ‘every’ argument. Note that weekly windows start on Monday.
‘datapoint’: Start from the first encountered data point.
a day of the week (only takes effect if every contains
'w'
):‘monday’: Start the window on the Monday before the first data point.
‘tuesday’: Start the window on the Tuesday before the first data point.
…
‘sunday’: Start the window on the Sunday before the first data point.
- check_sorted
When the
by
argument is given, polars can not check sortedness by the metadata and has to do a full scan on the index column to verify data is sorted. This is expensive. If you are sure the data within the by groups is sorted, you can set this toFalse
. Doing so incorrectly will lead to incorrect output
- Returns:
- LazyGroupBy
Object you can call
.agg
on to aggregate by groups, the result of which will be sorted by index_column (but note that if by columns are passed, it will only be sorted within each by group).
See also
Notes
If you’re coming from pandas, then
# polars df.groupby_dynamic("ts", every="1d").agg(pl.col("value").sum())
is equivalent to
# pandas df.set_index("ts").resample("D")["value"].sum().reset_index()
though note that, unlike pandas, polars doesn’t add extra rows for empty windows. If you need index_column to be evenly spaced, then please combine with
DataFrame.upsample()
.Examples
>>> from datetime import datetime >>> # create an example dataframe >>> lf = pl.LazyFrame( ... { ... "time": pl.date_range( ... start=datetime(2021, 12, 16), ... end=datetime(2021, 12, 16, 3), ... interval="30m", ... eager=True, ... ), ... "n": range(7), ... } ... ) >>> lf.collect() shape: (7, 2) ┌─────────────────────┬─────┐ │ time ┆ n │ │ --- ┆ --- │ │ datetime[μs] ┆ i64 │ ╞═════════════════════╪═════╡ │ 2021-12-16 00:00:00 ┆ 0 │ │ 2021-12-16 00:30:00 ┆ 1 │ │ 2021-12-16 01:00:00 ┆ 2 │ │ 2021-12-16 01:30:00 ┆ 3 │ │ 2021-12-16 02:00:00 ┆ 4 │ │ 2021-12-16 02:30:00 ┆ 5 │ │ 2021-12-16 03:00:00 ┆ 6 │ └─────────────────────┴─────┘
Group by windows of 1 hour starting at 2021-12-16 00:00:00.
>>> lf.groupby_dynamic("time", every="1h", closed="right").agg( ... [ ... pl.col("time").min().alias("time_min"), ... pl.col("time").max().alias("time_max"), ... ] ... ).collect() shape: (4, 3) ┌─────────────────────┬─────────────────────┬─────────────────────┐ │ time ┆ time_min ┆ time_max │ │ --- ┆ --- ┆ --- │ │ datetime[μs] ┆ datetime[μs] ┆ datetime[μs] │ ╞═════════════════════╪═════════════════════╪═════════════════════╡ │ 2021-12-15 23:00:00 ┆ 2021-12-16 00:00:00 ┆ 2021-12-16 00:00:00 │ │ 2021-12-16 00:00:00 ┆ 2021-12-16 00:30:00 ┆ 2021-12-16 01:00:00 │ │ 2021-12-16 01:00:00 ┆ 2021-12-16 01:30:00 ┆ 2021-12-16 02:00:00 │ │ 2021-12-16 02:00:00 ┆ 2021-12-16 02:30:00 ┆ 2021-12-16 03:00:00 │ └─────────────────────┴─────────────────────┴─────────────────────┘
The window boundaries can also be added to the aggregation result
>>> lf.groupby_dynamic( ... "time", every="1h", include_boundaries=True, closed="right" ... ).agg([pl.col("time").count().alias("time_count")]).collect() shape: (4, 4) ┌─────────────────────┬─────────────────────┬─────────────────────┬────────────┐ │ _lower_boundary ┆ _upper_boundary ┆ time ┆ time_count │ │ --- ┆ --- ┆ --- ┆ --- │ │ datetime[μs] ┆ datetime[μs] ┆ datetime[μs] ┆ u32 │ ╞═════════════════════╪═════════════════════╪═════════════════════╪════════════╡ │ 2021-12-15 23:00:00 ┆ 2021-12-16 00:00:00 ┆ 2021-12-15 23:00:00 ┆ 1 │ │ 2021-12-16 00:00:00 ┆ 2021-12-16 01:00:00 ┆ 2021-12-16 00:00:00 ┆ 2 │ │ 2021-12-16 01:00:00 ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 01:00:00 ┆ 2 │ │ 2021-12-16 02:00:00 ┆ 2021-12-16 03:00:00 ┆ 2021-12-16 02:00:00 ┆ 2 │ └─────────────────────┴─────────────────────┴─────────────────────┴────────────┘
When closed=”left”, should not include right end of interval [lower_bound, upper_bound)
>>> lf.groupby_dynamic("time", every="1h", closed="left").agg( ... [ ... pl.col("time").count().alias("time_count"), ... pl.col("time").alias("time_agg_list"), ... ] ... ).collect() shape: (4, 3) ┌─────────────────────┬────────────┬───────────────────────────────────┐ │ time ┆ time_count ┆ time_agg_list │ │ --- ┆ --- ┆ --- │ │ datetime[μs] ┆ u32 ┆ list[datetime[μs]] │ ╞═════════════════════╪════════════╪═══════════════════════════════════╡ │ 2021-12-16 00:00:00 ┆ 2 ┆ [2021-12-16 00:00:00, 2021-12-16… │ │ 2021-12-16 01:00:00 ┆ 2 ┆ [2021-12-16 01:00:00, 2021-12-16… │ │ 2021-12-16 02:00:00 ┆ 2 ┆ [2021-12-16 02:00:00, 2021-12-16… │ │ 2021-12-16 03:00:00 ┆ 1 ┆ [2021-12-16 03:00:00] │ └─────────────────────┴────────────┴───────────────────────────────────┘
When closed=”both” the time values at the window boundaries belong to 2 groups.
>>> lf.groupby_dynamic("time", every="1h", closed="both").agg( ... pl.col("time").count().alias("time_count") ... ).collect() shape: (5, 2) ┌─────────────────────┬────────────┐ │ time ┆ time_count │ │ --- ┆ --- │ │ datetime[μs] ┆ u32 │ ╞═════════════════════╪════════════╡ │ 2021-12-15 23:00:00 ┆ 1 │ │ 2021-12-16 00:00:00 ┆ 3 │ │ 2021-12-16 01:00:00 ┆ 3 │ │ 2021-12-16 02:00:00 ┆ 3 │ │ 2021-12-16 03:00:00 ┆ 1 │ └─────────────────────┴────────────┘
Dynamic groupbys can also be combined with grouping on normal keys
>>> lf = pl.LazyFrame( ... { ... "time": pl.date_range( ... start=datetime(2021, 12, 16), ... end=datetime(2021, 12, 16, 3), ... interval="30m", ... eager=True, ... ), ... "groups": ["a", "a", "a", "b", "b", "a", "a"], ... } ... ) >>> lf.collect() shape: (7, 2) ┌─────────────────────┬────────┐ │ time ┆ groups │ │ --- ┆ --- │ │ datetime[μs] ┆ str │ ╞═════════════════════╪════════╡ │ 2021-12-16 00:00:00 ┆ a │ │ 2021-12-16 00:30:00 ┆ a │ │ 2021-12-16 01:00:00 ┆ a │ │ 2021-12-16 01:30:00 ┆ b │ │ 2021-12-16 02:00:00 ┆ b │ │ 2021-12-16 02:30:00 ┆ a │ │ 2021-12-16 03:00:00 ┆ a │ └─────────────────────┴────────┘ >>> ( ... lf.groupby_dynamic( ... "time", ... every="1h", ... closed="both", ... by="groups", ... include_boundaries=True, ... ) ... ).agg([pl.col("time").count().alias("time_count")]).collect() shape: (7, 5) ┌────────┬─────────────────────┬─────────────────────┬─────────────────────┬────────────┐ │ groups ┆ _lower_boundary ┆ _upper_boundary ┆ time ┆ time_count │ │ --- ┆ --- ┆ --- ┆ --- ┆ --- │ │ str ┆ datetime[μs] ┆ datetime[μs] ┆ datetime[μs] ┆ u32 │ ╞════════╪═════════════════════╪═════════════════════╪═════════════════════╪════════════╡ │ a ┆ 2021-12-15 23:00:00 ┆ 2021-12-16 00:00:00 ┆ 2021-12-15 23:00:00 ┆ 1 │ │ a ┆ 2021-12-16 00:00:00 ┆ 2021-12-16 01:00:00 ┆ 2021-12-16 00:00:00 ┆ 3 │ │ a ┆ 2021-12-16 01:00:00 ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 01:00:00 ┆ 1 │ │ a ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 03:00:00 ┆ 2021-12-16 02:00:00 ┆ 2 │ │ a ┆ 2021-12-16 03:00:00 ┆ 2021-12-16 04:00:00 ┆ 2021-12-16 03:00:00 ┆ 1 │ │ b ┆ 2021-12-16 01:00:00 ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 01:00:00 ┆ 2 │ │ b ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 03:00:00 ┆ 2021-12-16 02:00:00 ┆ 1 │ └────────┴─────────────────────┴─────────────────────┴─────────────────────┴────────────┘
Dynamic groupby on an index column
>>> lf = pl.LazyFrame( ... { ... "idx": pl.int_range(0, 6, eager=True), ... "A": ["A", "A", "B", "B", "B", "C"], ... } ... ) >>> lf.groupby_dynamic( ... "idx", ... every="2i", ... period="3i", ... include_boundaries=True, ... closed="right", ... ).agg(pl.col("A").alias("A_agg_list")).collect() shape: (3, 4) ┌─────────────────┬─────────────────┬─────┬─────────────────┐ │ _lower_boundary ┆ _upper_boundary ┆ idx ┆ A_agg_list │ │ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 ┆ list[str] │ ╞═════════════════╪═════════════════╪═════╪═════════════════╡ │ 0 ┆ 3 ┆ 0 ┆ ["A", "B", "B"] │ │ 2 ┆ 5 ┆ 2 ┆ ["B", "B", "C"] │ │ 4 ┆ 7 ┆ 4 ┆ ["C"] │ └─────────────────┴─────────────────┴─────┴─────────────────┘
- groupby_rolling(
- index_column: IntoExpr,
- *,
- period: str | timedelta,
- offset: str | timedelta | None = None,
- closed: ClosedInterval = 'right',
- by: IntoExpr | Iterable[IntoExpr] | None = None,
- check_sorted: bool = True,
Create rolling groups based on a time, Int32, or Int64 column.
Different from a
dynamic_groupby
the windows are now determined by the individual values and are not of constant intervals. For constant intervals use groupby_dynamic.If you have a time series
<t_0, t_1, ..., t_n>
, then by default the windows created will be(t_0 - period, t_0]
(t_1 - period, t_1]
…
(t_n - period, t_n]
The period and offset arguments are created either from a timedelta, or by using the following string language:
1ns (1 nanosecond)
1us (1 microsecond)
1ms (1 millisecond)
1s (1 second)
1m (1 minute)
1h (1 hour)
1d (1 calendar day)
1w (1 calendar week)
1mo (1 calendar month)
1q (1 calendar quarter)
1y (1 calendar year)
1i (1 index count)
Or combine them: “3d12h4m25s” # 3 days, 12 hours, 4 minutes, and 25 seconds
Suffix with “_saturating” to indicate that dates too large for their month should saturate at the largest date (e.g. 2022-02-29 -> 2022-02-28) instead of erroring.
By “calendar day”, we mean the corresponding time on the next day (which may not be 24 hours, due to daylight savings). Similarly for “calendar week”, “calendar month”, “calendar quarter”, and “calendar year”.
In case of a groupby_rolling on an integer column, the windows are defined by:
“1i” # length 1
“10i” # length 10
- Parameters:
- index_column
Column used to group based on the time window. Often of type Date/Datetime. This column must be sorted in ascending order (or, if by is specified, then it must be sorted in ascending order within each group).
In case of a rolling groupby on indices, dtype needs to be one of {Int32, Int64}. Note that Int32 gets temporarily cast to Int64, so if performance matters use an Int64 column.
- period
length of the window - must be non-negative
- offset
offset of the window. Default is -period
- closed{‘right’, ‘left’, ‘both’, ‘none’}
Define which sides of the temporal interval are closed (inclusive).
- by
Also group by this column/these columns
- check_sorted
When the
by
argument is given, polars can not check sortedness by the metadata and has to do a full scan on the index column to verify data is sorted. This is expensive. If you are sure the data within the by groups is sorted, you can set this toFalse
. Doing so incorrectly will lead to incorrect output
- Returns:
- LazyGroupBy
Object you can call
.agg
on to aggregate by groups, the result of which will be sorted by index_column (but note that if by columns are passed, it will only be sorted within each by group).
See also
Examples
>>> dates = [ ... "2020-01-01 13:45:48", ... "2020-01-01 16:42:13", ... "2020-01-01 16:45:09", ... "2020-01-02 18:12:48", ... "2020-01-03 19:45:32", ... "2020-01-08 23:16:43", ... ] >>> df = pl.LazyFrame({"dt": dates, "a": [3, 7, 5, 9, 2, 1]}).with_columns( ... pl.col("dt").str.strptime(pl.Datetime).set_sorted() ... ) >>> out = ( ... df.groupby_rolling(index_column="dt", period="2d") ... .agg( ... [ ... pl.sum("a").alias("sum_a"), ... pl.min("a").alias("min_a"), ... pl.max("a").alias("max_a"), ... ] ... ) ... .collect() ... ) >>> assert out["sum_a"].to_list() == [3, 10, 15, 24, 11, 1] >>> assert out["max_a"].to_list() == [3, 7, 7, 9, 9, 1] >>> assert out["min_a"].to_list() == [3, 3, 3, 3, 2, 1] >>> out shape: (6, 4) ┌─────────────────────┬───────┬───────┬───────┐ │ dt ┆ sum_a ┆ min_a ┆ max_a │ │ --- ┆ --- ┆ --- ┆ --- │ │ datetime[μs] ┆ i64 ┆ i64 ┆ i64 │ ╞═════════════════════╪═══════╪═══════╪═══════╡ │ 2020-01-01 13:45:48 ┆ 3 ┆ 3 ┆ 3 │ │ 2020-01-01 16:42:13 ┆ 10 ┆ 3 ┆ 7 │ │ 2020-01-01 16:45:09 ┆ 15 ┆ 3 ┆ 7 │ │ 2020-01-02 18:12:48 ┆ 24 ┆ 3 ┆ 9 │ │ 2020-01-03 19:45:32 ┆ 11 ┆ 2 ┆ 9 │ │ 2020-01-08 23:16:43 ┆ 1 ┆ 1 ┆ 1 │ └─────────────────────┴───────┴───────┴───────┘
- head(n: int = 5) Self [source]
Get the first n rows.
- Parameters:
- n
Number of rows to return.
Notes
Consider using the
fetch()
operation if you only want to test your query. Thefetch()
operation will load the first n rows at the scan level, whereas thehead()
/limit()
are applied at the end.Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 2, 3, 4, 5, 6], ... "b": [7, 8, 9, 10, 11, 12], ... } ... ) >>> lf.head().collect() shape: (5, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 7 │ │ 2 ┆ 8 │ │ 3 ┆ 9 │ │ 4 ┆ 10 │ │ 5 ┆ 11 │ └─────┴─────┘ >>> lf.head(2).collect() shape: (2, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 7 │ │ 2 ┆ 8 │ └─────┴─────┘
- inspect(fmt: str = '{}') Self [source]
Inspect a node in the computation graph.
Print the value that this node in the computation graph evaluates to and passes on the value.
Examples
>>> lf = pl.LazyFrame({"foo": [1, 1, -2, 3]}) >>> ( ... lf.select(pl.col("foo").cumsum().alias("bar")) ... .inspect() # print the node before the filter ... .filter(pl.col("bar") == pl.col("foo")) ... ) <LazyFrame [1 col, {"bar": Int64}] at ...>
- interpolate() Self [source]
Interpolate intermediate values. The interpolation method is linear.
Examples
>>> lf = pl.LazyFrame( ... { ... "foo": [1, None, 9, 10], ... "bar": [6, 7, 9, None], ... "baz": [1, None, None, 9], ... } ... ) >>> lf.interpolate().collect() shape: (4, 3) ┌─────┬──────┬─────┐ │ foo ┆ bar ┆ baz │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 │ ╞═════╪══════╪═════╡ │ 1 ┆ 6 ┆ 1 │ │ 5 ┆ 7 ┆ 3 │ │ 9 ┆ 9 ┆ 6 │ │ 10 ┆ null ┆ 9 │ └─────┴──────┴─────┘
- join(
- other: LazyFrame,
- on: str | Expr | Sequence[str | Expr] | None = None,
- how: JoinStrategy = 'inner',
- *,
- left_on: str | Expr | Sequence[str | Expr] | None = None,
- right_on: str | Expr | Sequence[str | Expr] | None = None,
- suffix: str = '_right',
- validate: JoinValidation = 'm:m',
- allow_parallel: bool = True,
- force_parallel: bool = False,
Add a join operation to the Logical Plan.
- Parameters:
- other
Lazy DataFrame to join with.
- on
Join column of both DataFrames. If set, left_on and right_on should be None.
- how{‘inner’, ‘left’, ‘outer’, ‘semi’, ‘anti’, ‘cross’}
Join strategy.
- left_on
Join column of the left DataFrame.
- right_on
Join column of the right DataFrame.
- suffix
Suffix to append to columns with a duplicate name.
- validate: {‘m:m’, ‘m:1’, ‘1:m’, ‘1:1’}
Checks if join is of specified type.
- many_to_many
“m:m”: default, does not result in checks
- one_to_one
“1:1”: check if join keys are unique in both left and right datasets
- one_to_many
“1:m”: check if join keys are unique in left dataset
- many_to_one
“m:1”: check if join keys are unique in right dataset
Note
This is currently not supported the streaming engine.
This is only supported when joined by single columns.
- allow_parallel
Allow the physical plan to optionally evaluate the computation of both DataFrames up to the join in parallel.
- force_parallel
Force the physical plan to evaluate the computation of both DataFrames up to the join in parallel.
See also
Examples
>>> lf = pl.LazyFrame( ... { ... "foo": [1, 2, 3], ... "bar": [6.0, 7.0, 8.0], ... "ham": ["a", "b", "c"], ... } ... ) >>> other_lf = pl.LazyFrame( ... { ... "apple": ["x", "y", "z"], ... "ham": ["a", "b", "d"], ... } ... ) >>> lf.join(other_lf, on="ham").collect() shape: (2, 4) ┌─────┬─────┬─────┬───────┐ │ foo ┆ bar ┆ ham ┆ apple │ │ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ str ┆ str │ ╞═════╪═════╪═════╪═══════╡ │ 1 ┆ 6.0 ┆ a ┆ x │ │ 2 ┆ 7.0 ┆ b ┆ y │ └─────┴─────┴─────┴───────┘ >>> lf.join(other_lf, on="ham", how="outer").collect() shape: (4, 4) ┌──────┬──────┬─────┬───────┐ │ foo ┆ bar ┆ ham ┆ apple │ │ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ str ┆ str │ ╞══════╪══════╪═════╪═══════╡ │ 1 ┆ 6.0 ┆ a ┆ x │ │ 2 ┆ 7.0 ┆ b ┆ y │ │ null ┆ null ┆ d ┆ z │ │ 3 ┆ 8.0 ┆ c ┆ null │ └──────┴──────┴─────┴───────┘ >>> lf.join(other_lf, on="ham", how="left").collect() shape: (3, 4) ┌─────┬─────┬─────┬───────┐ │ foo ┆ bar ┆ ham ┆ apple │ │ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ str ┆ str │ ╞═════╪═════╪═════╪═══════╡ │ 1 ┆ 6.0 ┆ a ┆ x │ │ 2 ┆ 7.0 ┆ b ┆ y │ │ 3 ┆ 8.0 ┆ c ┆ null │ └─────┴─────┴─────┴───────┘ >>> lf.join(other_lf, on="ham", how="semi").collect() shape: (2, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ ham │ │ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ str │ ╞═════╪═════╪═════╡ │ 1 ┆ 6.0 ┆ a │ │ 2 ┆ 7.0 ┆ b │ └─────┴─────┴─────┘ >>> lf.join(other_lf, on="ham", how="anti").collect() shape: (1, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ ham │ │ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ str │ ╞═════╪═════╪═════╡ │ 3 ┆ 8.0 ┆ c │ └─────┴─────┴─────┘
- join_asof(
- other: LazyFrame,
- *,
- left_on: str | None | Expr = None,
- right_on: str | None | Expr = None,
- on: str | None | Expr = None,
- by_left: str | Sequence[str] | None = None,
- by_right: str | Sequence[str] | None = None,
- by: str | Sequence[str] | None = None,
- strategy: AsofJoinStrategy = 'backward',
- suffix: str = '_right',
- tolerance: str | int | float | None = None,
- allow_parallel: bool = True,
- force_parallel: bool = False,
Perform an asof join.
This is similar to a left-join except that we match on nearest key rather than equal keys.
Both DataFrames must be sorted by the join_asof key.
For each row in the left DataFrame:
A “backward” search selects the last row in the right DataFrame whose ‘on’ key is less than or equal to the left’s key.
A “forward” search selects the first row in the right DataFrame whose ‘on’ key is greater than or equal to the left’s key.
A “nearest” search selects the last row in the right DataFrame whose value is nearest to the left’s key.
The default is “backward”.
- Parameters:
- other
Lazy DataFrame to join with.
- left_on
Join column of the left DataFrame.
- right_on
Join column of the right DataFrame.
- on
Join column of both DataFrames. If set, left_on and right_on should be None.
- by
Join on these columns before doing asof join.
- by_left
Join on these columns before doing asof join.
- by_right
Join on these columns before doing asof join.
- strategy{‘backward’, ‘forward’, ‘nearest’}
Join strategy.
- suffix
Suffix to append to columns with a duplicate name.
- tolerance
Numeric tolerance. By setting this the join will only be done if the near keys are within this distance. If an asof join is done on columns of dtype “Date”, “Datetime”, “Duration” or “Time” you use the following string language:
1ns (1 nanosecond)
1us (1 microsecond)
1ms (1 millisecond)
1s (1 second)
1m (1 minute)
1h (1 hour)
1d (1 calendar day)
1w (1 calendar week)
1mo (1 calendar month)
1q (1 calendar quarter)
1y (1 calendar year)
1i (1 index count)
Or combine them: “3d12h4m25s” # 3 days, 12 hours, 4 minutes, and 25 seconds
Suffix with “_saturating” to indicate that dates too large for their month should saturate at the largest date (e.g. 2022-02-29 -> 2022-02-28) instead of erroring.
By “calendar day”, we mean the corresponding time on the next day (which may not be 24 hours, due to daylight savings). Similarly for “calendar week”, “calendar month”, “calendar quarter”, and “calendar year”.
- allow_parallel
Allow the physical plan to optionally evaluate the computation of both DataFrames up to the join in parallel.
- force_parallel
Force the physical plan to evaluate the computation of both DataFrames up to the join in parallel.
Examples
>>> from datetime import datetime >>> gdp = pl.LazyFrame( ... { ... "date": [ ... datetime(2016, 1, 1), ... datetime(2017, 1, 1), ... datetime(2018, 1, 1), ... datetime(2019, 1, 1), ... ], # note record date: Jan 1st (sorted!) ... "gdp": [4164, 4411, 4566, 4696], ... } ... ).set_sorted("date") >>> population = pl.LazyFrame( ... { ... "date": [ ... datetime(2016, 5, 12), ... datetime(2017, 5, 12), ... datetime(2018, 5, 12), ... datetime(2019, 5, 12), ... ], # note record date: May 12th (sorted!) ... "population": [82.19, 82.66, 83.12, 83.52], ... } ... ).set_sorted("date") >>> population.join_asof(gdp, on="date", strategy="backward").collect() shape: (4, 3) ┌─────────────────────┬────────────┬──────┐ │ date ┆ population ┆ gdp │ │ --- ┆ --- ┆ --- │ │ datetime[μs] ┆ f64 ┆ i64 │ ╞═════════════════════╪════════════╪══════╡ │ 2016-05-12 00:00:00 ┆ 82.19 ┆ 4164 │ │ 2017-05-12 00:00:00 ┆ 82.66 ┆ 4411 │ │ 2018-05-12 00:00:00 ┆ 83.12 ┆ 4566 │ │ 2019-05-12 00:00:00 ┆ 83.52 ┆ 4696 │ └─────────────────────┴────────────┴──────┘
- last() Self [source]
Get the last row of the DataFrame.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 3, 5], ... "b": [2, 4, 6], ... } ... ) >>> lf.last().collect() shape: (1, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 5 ┆ 6 │ └─────┴─────┘
- lazy() Self [source]
Return lazy representation, i.e. itself.
Useful for writing code that expects either a
DataFrame
orLazyFrame
.- Returns:
- LazyFrame
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [None, 2, 3, 4], ... "b": [0.5, None, 2.5, 13], ... "c": [True, True, False, None], ... } ... ) >>> lf.lazy() <LazyFrame [3 cols, {"a": Int64 … "c": Boolean}] at ...>
- limit(n: int = 5) Self [source]
Get the first n rows.
Alias for
LazyFrame.head()
.- Parameters:
- n
Number of rows to return.
Notes
Consider using the
fetch()
operation if you only want to test your query. Thefetch()
operation will load the first n rows at the scan level, whereas thehead()
/limit()
are applied at the end.Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 2, 3, 4, 5, 6], ... "b": [7, 8, 9, 10, 11, 12], ... } ... ) >>> lf.limit().collect() shape: (5, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 7 │ │ 2 ┆ 8 │ │ 3 ┆ 9 │ │ 4 ┆ 10 │ │ 5 ┆ 11 │ └─────┴─────┘ >>> lf.limit(2).collect() shape: (2, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 7 │ │ 2 ┆ 8 │ └─────┴─────┘
- map(
- function: Callable[[DataFrame], DataFrame],
- *,
- predicate_pushdown: bool = True,
- projection_pushdown: bool = True,
- slice_pushdown: bool = True,
- no_optimizations: bool = False,
- schema: None | SchemaDict = None,
- validate_output_schema: bool = True,
- streamable: bool = False,
Apply a custom function.
It is important that the function returns a Polars DataFrame.
- Parameters:
- function
Lambda/ function to apply.
- predicate_pushdown
Allow predicate pushdown optimization to pass this node.
- projection_pushdown
Allow projection pushdown optimization to pass this node.
- slice_pushdown
Allow slice pushdown optimization to pass this node.
- no_optimizations
Turn off all optimizations past this point.
- schema
Output schema of the function, if set to
None
we assume that the schema will remain unchanged by the applied function.- validate_output_schema
It is paramount that polars’ schema is correct. This flag will ensure that the output schema of this function will be checked with the expected schema. Setting this to
False
will not do this check, but may lead to hard to debug bugs.- streamable
Whether the function that is given is eligible to be running with the streaming engine. That means that the function must produce the same result when it is executed in batches or when it is be executed on the full dataset.
Warning
The
schema
of a LazyFrame must always be correct. It is up to the caller of this function to ensure that this invariant is upheld.It is important that the optimization flags are correct. If the custom function for instance does an aggregation of a column,
predicate_pushdown
should not be allowed, as this prunes rows and will influence your aggregation results.Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 2], ... "b": [3, 4], ... } ... ) >>> lf.map(lambda x: 2 * x).collect() shape: (2, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 2 ┆ 6 │ │ 4 ┆ 8 │ └─────┴─────┘
- max() Self [source]
Aggregate the columns in the LazyFrame to their maximum value.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 2, 3, 4], ... "b": [1, 2, 1, 1], ... } ... ) >>> lf.max().collect() shape: (1, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 4 ┆ 2 │ └─────┴─────┘
- mean() Self [source]
Aggregate the columns in the LazyFrame to their mean value.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 2, 3, 4], ... "b": [1, 2, 1, 1], ... } ... ) >>> lf.mean().collect() shape: (1, 2) ┌─────┬──────┐ │ a ┆ b │ │ --- ┆ --- │ │ f64 ┆ f64 │ ╞═════╪══════╡ │ 2.5 ┆ 1.25 │ └─────┴──────┘
- median() Self [source]
Aggregate the columns in the LazyFrame to their median value.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 2, 3, 4], ... "b": [1, 2, 1, 1], ... } ... ) >>> lf.median().collect() shape: (1, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ f64 ┆ f64 │ ╞═════╪═════╡ │ 2.5 ┆ 1.0 │ └─────┴─────┘
- melt(
- id_vars: ColumnNameOrSelector | Sequence[ColumnNameOrSelector] | None = None,
- value_vars: ColumnNameOrSelector | Sequence[ColumnNameOrSelector] | None = None,
- variable_name: str | None = None,
- value_name: str | None = None,
- *,
- streamable: bool = True,
Unpivot a DataFrame from wide to long format.
Optionally leaves identifiers set.
This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (id_vars) while all other columns, considered measured variables (value_vars), are “unpivoted” to the row axis leaving just two non-identifier columns, ‘variable’ and ‘value’.
- Parameters:
- id_vars
Column(s) or selector(s) to use as identifier variables.
- value_vars
Column(s) or selector(s) to use as values variables; if value_vars is empty all columns that are not in id_vars will be used.
- variable_name
Name to give to the variable column. Defaults to “variable”
- value_name
Name to give to the value column. Defaults to “value”
- streamable
Allow this node to run in the streaming engine. If this runs in streaming, the output of the melt operation will not have a stable ordering.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": ["x", "y", "z"], ... "b": [1, 3, 5], ... "c": [2, 4, 6], ... } ... ) >>> import polars.selectors as cs >>> lf.melt(id_vars="a", value_vars=cs.numeric()).collect() shape: (6, 3) ┌─────┬──────────┬───────┐ │ a ┆ variable ┆ value │ │ --- ┆ --- ┆ --- │ │ str ┆ str ┆ i64 │ ╞═════╪══════════╪═══════╡ │ x ┆ b ┆ 1 │ │ y ┆ b ┆ 3 │ │ z ┆ b ┆ 5 │ │ x ┆ c ┆ 2 │ │ y ┆ c ┆ 4 │ │ z ┆ c ┆ 6 │ └─────┴──────────┴───────┘
- merge_sorted(other: LazyFrame, key: str) Self [source]
Take two sorted DataFrames and merge them by the sorted key.
The output of this operation will also be sorted. It is the callers responsibility that the frames are sorted by that key otherwise the output will not make sense.
The schemas of both LazyFrames must be equal.
- Parameters:
- other
Other DataFrame that must be merged
- key
Key that is sorted.
Examples
>>> df0 = pl.LazyFrame( ... {"name": ["steve", "elise", "bob"], "age": [42, 44, 18]} ... ).sort("age") >>> df0.collect() shape: (3, 2) ┌───────┬─────┐ │ name ┆ age │ │ --- ┆ --- │ │ str ┆ i64 │ ╞═══════╪═════╡ │ bob ┆ 18 │ │ steve ┆ 42 │ │ elise ┆ 44 │ └───────┴─────┘ >>> df1 = pl.LazyFrame( ... {"name": ["anna", "megan", "steve", "thomas"], "age": [21, 33, 42, 20]} ... ).sort("age") >>> df1.collect() shape: (4, 2) ┌────────┬─────┐ │ name ┆ age │ │ --- ┆ --- │ │ str ┆ i64 │ ╞════════╪═════╡ │ thomas ┆ 20 │ │ anna ┆ 21 │ │ megan ┆ 33 │ │ steve ┆ 42 │ └────────┴─────┘ >>> df0.merge_sorted(df1, key="age").collect() shape: (7, 2) ┌────────┬─────┐ │ name ┆ age │ │ --- ┆ --- │ │ str ┆ i64 │ ╞════════╪═════╡ │ bob ┆ 18 │ │ thomas ┆ 20 │ │ anna ┆ 21 │ │ megan ┆ 33 │ │ steve ┆ 42 │ │ steve ┆ 42 │ │ elise ┆ 44 │ └────────┴─────┘
- min() Self [source]
Aggregate the columns in the LazyFrame to their minimum value.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 2, 3, 4], ... "b": [1, 2, 1, 1], ... } ... ) >>> lf.min().collect() shape: (1, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 1 │ └─────┴─────┘
- null_count() Self [source]
Aggregate the columns in the LazyFrame as the sum of their null value count.
Examples
>>> lf = pl.LazyFrame( ... { ... "foo": [1, None, 3], ... "bar": [6, 7, None], ... "ham": ["a", "b", "c"], ... } ... ) >>> lf.null_count().collect() shape: (1, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ ham │ │ --- ┆ --- ┆ --- │ │ u32 ┆ u32 ┆ u32 │ ╞═════╪═════╪═════╡ │ 1 ┆ 1 ┆ 0 │ └─────┴─────┴─────┘
- pipe(
- function: Callable[Concatenate[LazyFrame, P], T],
- *args: P.args,
- **kwargs: P.kwargs,
Offers a structured way to apply a sequence of user-defined functions (UDFs).
- Parameters:
- function
Callable; will receive the frame as the first parameter, followed by any given args/kwargs.
- *args
Arguments to pass to the UDF.
- **kwargs
Keyword arguments to pass to the UDF.
Examples
>>> def cast_str_to_int(data, col_name): ... return data.with_columns(pl.col(col_name).cast(pl.Int64)) ... >>> lf = pl.LazyFrame( ... { ... "a": [1, 2, 3, 4], ... "b": ["10", "20", "30", "40"], ... } ... ) >>> lf.pipe(cast_str_to_int, col_name="b").collect() shape: (4, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 10 │ │ 2 ┆ 20 │ │ 3 ┆ 30 │ │ 4 ┆ 40 │ └─────┴─────┘
>>> lf = pl.LazyFrame( ... { ... "b": [1, 2], ... "a": [3, 4], ... } ... ) >>> lf.collect() shape: (2, 2) ┌─────┬─────┐ │ b ┆ a │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 3 │ │ 2 ┆ 4 │ └─────┴─────┘ >>> lf.pipe(lambda tdf: tdf.select(sorted(tdf.columns))).collect() shape: (2, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 3 ┆ 1 │ │ 4 ┆ 2 │ └─────┴─────┘
- profile(
- *,
- type_coercion: bool = True,
- predicate_pushdown: bool = True,
- projection_pushdown: bool = True,
- simplify_expression: bool = True,
- no_optimization: bool = False,
- slice_pushdown: bool = True,
- comm_subplan_elim: bool = True,
- comm_subexpr_elim: bool = True,
- show_plot: bool = False,
- truncate_nodes: int = 0,
- figsize: tuple[int, int] = (18, 8),
- streaming: bool = False,
Profile a LazyFrame.
This will run the query and return a tuple containing the materialized DataFrame and a DataFrame that contains profiling information of each node that is executed.
The units of the timings are microseconds.
- Parameters:
- type_coercion
Do type coercion optimization.
- predicate_pushdown
Do predicate pushdown optimization.
- projection_pushdown
Do projection pushdown optimization.
- simplify_expression
Run simplify expressions optimization.
- no_optimization
Turn off (certain) optimizations.
- slice_pushdown
Slice pushdown optimization.
- comm_subplan_elim
Will try to cache branching subplans that occur on self-joins or unions.
- comm_subexpr_elim
Common subexpressions will be cached and reused.
- show_plot
Show a gantt chart of the profiling result
- truncate_nodes
Truncate the label lengths in the gantt chart to this number of characters.
- figsize
matplotlib figsize of the profiling plot
- streaming
Run parts of the query in a streaming fashion (this is in an alpha state)
Examples
>>> lf = pl.LazyFrame( ... { ... "a": ["a", "b", "a", "b", "b", "c"], ... "b": [1, 2, 3, 4, 5, 6], ... "c": [6, 5, 4, 3, 2, 1], ... } ... ) >>> lf.groupby("a", maintain_order=True).agg(pl.all().sum()).sort( ... "a" ... ).profile() (shape: (3, 3) ┌─────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╡ │ a ┆ 4 ┆ 10 │ │ b ┆ 11 ┆ 10 │ │ c ┆ 6 ┆ 1 │ └─────┴─────┴─────┘, shape: (3, 3) ┌────────────────────────┬───────┬──────┐ │ node ┆ start ┆ end │ │ --- ┆ --- ┆ --- │ │ str ┆ u64 ┆ u64 │ ╞════════════════════════╪═══════╪══════╡ │ optimization ┆ 0 ┆ 5 │ │ groupby_partitioned(a) ┆ 5 ┆ 470 │ │ sort(a) ┆ 475 ┆ 1964 │ └────────────────────────┴───────┴──────┘)
- quantile(
- quantile: float | Expr,
- interpolation: RollingInterpolationMethod = 'nearest',
Aggregate the columns in the LazyFrame to their quantile value.
- Parameters:
- quantile
Quantile between 0.0 and 1.0.
- interpolation{‘nearest’, ‘higher’, ‘lower’, ‘midpoint’, ‘linear’}
Interpolation method.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 2, 3, 4], ... "b": [1, 2, 1, 1], ... } ... ) >>> lf.quantile(0.7).collect() shape: (1, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ f64 ┆ f64 │ ╞═════╪═════╡ │ 3.0 ┆ 1.0 │ └─────┴─────┘
- classmethod read_json(source: str | Path | IOBase) Self [source]
Read a logical plan from a JSON file to construct a LazyFrame.
Deprecated since version 0.18.12: This class method has been renamed to
deserialize
.- Parameters:
- source
Path to a file or a file-like object (by file-like object, we refer to objects that have a
read()
method, such as a file handler (e.g. via builtinopen
function) orBytesIO
).
See also
- rename(mapping: dict[str, str]) Self [source]
Rename column names.
- Parameters:
- mapping
Key value pairs that map from old name to new name.
Notes
If names are swapped. E.g. ‘A’ points to ‘B’ and ‘B’ points to ‘A’, polars will block projection and predicate pushdowns at this node.
Examples
>>> lf = pl.LazyFrame( ... { ... "foo": [1, 2, 3], ... "bar": [6, 7, 8], ... "ham": ["a", "b", "c"], ... } ... ) >>> lf.rename({"foo": "apple"}).collect() shape: (3, 3) ┌───────┬─────┬─────┐ │ apple ┆ bar ┆ ham │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ str │ ╞═══════╪═════╪═════╡ │ 1 ┆ 6 ┆ a │ │ 2 ┆ 7 ┆ b │ │ 3 ┆ 8 ┆ c │ └───────┴─────┴─────┘
- reverse() Self [source]
Reverse the DataFrame.
Examples
>>> lf = pl.LazyFrame( ... { ... "key": ["a", "b", "c"], ... "val": [1, 2, 3], ... } ... ) >>> lf.reverse().collect() shape: (3, 2) ┌─────┬─────┐ │ key ┆ val │ │ --- ┆ --- │ │ str ┆ i64 │ ╞═════╪═════╡ │ c ┆ 3 │ │ b ┆ 2 │ │ a ┆ 1 │ └─────┴─────┘
- property schema: SchemaDict[source]
Get a dict[column name, DataType].
Examples
>>> lf = pl.LazyFrame( ... { ... "foo": [1, 2, 3], ... "bar": [6.0, 7.0, 8.0], ... "ham": ["a", "b", "c"], ... } ... ) >>> lf.schema {'foo': Int64, 'bar': Float64, 'ham': Utf8}
- select(*exprs: IntoExpr | Iterable[IntoExpr], **named_exprs: IntoExpr) Self [source]
Select columns from this LazyFrame.
- Parameters:
- *exprs
Column(s) to select, specified as positional arguments. Accepts expression input. Strings are parsed as column names, other non-expression inputs are parsed as literals.
- **named_exprs
Additional columns to select, specified as keyword arguments. The columns will be renamed to the keyword used.
Examples
Pass the name of a column to select that column.
>>> lf = pl.LazyFrame( ... { ... "foo": [1, 2, 3], ... "bar": [6, 7, 8], ... "ham": ["a", "b", "c"], ... } ... ) >>> lf.select("foo").collect() shape: (3, 1) ┌─────┐ │ foo │ │ --- │ │ i64 │ ╞═════╡ │ 1 │ │ 2 │ │ 3 │ └─────┘
Multiple columns can be selected by passing a list of column names.
>>> lf.select(["foo", "bar"]).collect() shape: (3, 2) ┌─────┬─────┐ │ foo ┆ bar │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 6 │ │ 2 ┆ 7 │ │ 3 ┆ 8 │ └─────┴─────┘
Multiple columns can also be selected using positional arguments instead of a list. Expressions are also accepted.
>>> lf.select(pl.col("foo"), pl.col("bar") + 1).collect() shape: (3, 2) ┌─────┬─────┐ │ foo ┆ bar │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 7 │ │ 2 ┆ 8 │ │ 3 ┆ 9 │ └─────┴─────┘
Use keyword arguments to easily name your expression inputs.
>>> lf.select( ... threshold=pl.when(pl.col("foo") > 2).then(10).otherwise(0) ... ).collect() shape: (3, 1) ┌───────────┐ │ threshold │ │ --- │ │ i32 │ ╞═══════════╡ │ 0 │ │ 0 │ │ 10 │ └───────────┘
Expressions with multiple outputs can be automatically instantiated as Structs by enabling the experimental setting
Config.set_auto_structify(True)
:>>> with pl.Config(auto_structify=True): ... lf.select( ... is_odd=(pl.col(pl.INTEGER_DTYPES) % 2).suffix("_is_odd"), ... ).collect() ... shape: (3, 1) ┌───────────┐ │ is_odd │ │ --- │ │ struct[2] │ ╞═══════════╡ │ {1,0} │ │ {0,1} │ │ {1,0} │ └───────────┘
- select_seq(
- *exprs: IntoExpr | Iterable[IntoExpr],
- **named_exprs: IntoExpr,
Select columns from this LazyFrame.
This will run all expression sequentially instead of in parallel. Use this when the work per expression is cheap.
- Parameters:
- *exprs
Column(s) to select, specified as positional arguments. Accepts expression input. Strings are parsed as column names, other non-expression inputs are parsed as literals.
- **named_exprs
Additional columns to select, specified as keyword arguments. The columns will be renamed to the keyword used.
See also
- serialize(file: None = None) str [source]
- serialize(file: IOBase | str | Path) None
Serialize the logical plan of this LazyFrame to a file or string in JSON format.
- Parameters:
- file
File path to which the result should be written. If set to
None
(default), the output is returned as a string instead.
See also
Examples
Serialize the logical plan into a JSON string.
>>> lf = pl.LazyFrame({"a": [1, 2, 3]}).sum() >>> json = lf.serialize() >>> json '{"LocalProjection":{"expr":[{"Agg":{"Sum":{"Column":"a"}}}],"input":{"DataFrameScan":{"df":{"columns":[{"name":"a","datatype":"Int64","bit_settings":"","values":[1,2,3]}]},"schema":{"inner":{"a":"Int64"}},"output_schema":null,"projection":null,"selection":null}},"schema":{"inner":{"a":"Int64"}}}}'
The logical plan can later be deserialized back into a LazyFrame.
>>> import io >>> pl.LazyFrame.deserialize(io.StringIO(json)).collect() shape: (1, 1) ┌─────┐ │ a │ │ --- │ │ i64 │ ╞═════╡ │ 6 │ └─────┘
- set_sorted( ) Self [source]
Indicate that one or multiple columns are sorted.
- Parameters:
- column
Columns that are sorted
- more_columns
Additional columns that are sorted, specified as positional arguments.
- descending
Whether the columns are sorted in descending order.
- shift(periods: int) Self [source]
Shift the values by a given period.
- Parameters:
- periods
Number of places to shift (may be negative).
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 3, 5], ... "b": [2, 4, 6], ... } ... ) >>> lf.shift(periods=1).collect() shape: (3, 2) ┌──────┬──────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞══════╪══════╡ │ null ┆ null │ │ 1 ┆ 2 │ │ 3 ┆ 4 │ └──────┴──────┘ >>> lf.shift(periods=-1).collect() shape: (3, 2) ┌──────┬──────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞══════╪══════╡ │ 3 ┆ 4 │ │ 5 ┆ 6 │ │ null ┆ null │ └──────┴──────┘
- shift_and_fill( ) Self [source]
Shift the values by a given period and fill the resulting null values.
- Parameters:
- fill_value
fill None values with the result of this expression.
- periods
Number of places to shift (may be negative).
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 3, 5], ... "b": [2, 4, 6], ... } ... ) >>> lf.shift_and_fill(fill_value=0, periods=1).collect() shape: (3, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 0 ┆ 0 │ │ 1 ┆ 2 │ │ 3 ┆ 4 │ └─────┴─────┘ >>> lf.shift_and_fill(periods=-1, fill_value=0).collect() shape: (3, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 3 ┆ 4 │ │ 5 ┆ 6 │ │ 0 ┆ 0 │ └─────┴─────┘
- show_graph(
- *,
- optimized: bool = True,
- show: bool = True,
- output_path: str | Path | None = None,
- raw_output: bool = False,
- figsize: tuple[float, float] = (16.0, 12.0),
- type_coercion: bool = True,
- predicate_pushdown: bool = True,
- projection_pushdown: bool = True,
- simplify_expression: bool = True,
- slice_pushdown: bool = True,
- comm_subplan_elim: bool = True,
- comm_subexpr_elim: bool = True,
- streaming: bool = False,
Show a plot of the query plan. Note that you should have graphviz installed.
- Parameters:
- optimized
Optimize the query plan.
- show
Show the figure.
- output_path
Write the figure to disk.
- raw_output
Return dot syntax. This cannot be combined with show and/or output_path.
- figsize
Passed to matplotlib if show == True.
- type_coercion
Do type coercion optimization.
- predicate_pushdown
Do predicate pushdown optimization.
- projection_pushdown
Do projection pushdown optimization.
- simplify_expression
Run simplify expressions optimization.
- slice_pushdown
Slice pushdown optimization.
- comm_subplan_elim
Will try to cache branching subplans that occur on self-joins or unions.
- comm_subexpr_elim
Common subexpressions will be cached and reused.
- streaming
Run parts of the query in a streaming fashion (this is in an alpha state)
Examples
>>> lf = pl.LazyFrame( ... { ... "a": ["a", "b", "a", "b", "b", "c"], ... "b": [1, 2, 3, 4, 5, 6], ... "c": [6, 5, 4, 3, 2, 1], ... } ... ) >>> lf.groupby("a", maintain_order=True).agg(pl.all().sum()).sort( ... "a" ... ).show_graph()
- sink_ipc(
- path: str | Path,
- *,
- compression: str | None = 'zstd',
- maintain_order: bool = True,
- type_coercion: bool = True,
- predicate_pushdown: bool = True,
- projection_pushdown: bool = True,
- simplify_expression: bool = True,
- no_optimization: bool = False,
- slice_pushdown: bool = True,
Persists a LazyFrame at the provided path.
This allows streaming results that are larger than RAM to be written to disk.
- Parameters:
- path
File path to which the file should be written.
- compression{‘lz4’, ‘zstd’}
Choose “zstd” for good compression performance. Choose “lz4” for fast compression/decompression.
- maintain_order
Maintain the order in which data is processed. Setting this to False will be slightly faster.
- type_coercion
Do type coercion optimization.
- predicate_pushdown
Do predicate pushdown optimization.
- projection_pushdown
Do projection pushdown optimization.
- simplify_expression
Run simplify expressions optimization.
- no_optimization
Turn off (certain) optimizations.
- slice_pushdown
Slice pushdown optimization.
- Returns:
- DataFrame
Examples
>>> lf = pl.scan_csv("/path/to/my_larger_than_ram_file.csv") >>> lf.sink_ipc("out.arrow")
- sink_parquet(
- path: str | Path,
- *,
- compression: str = 'zstd',
- compression_level: int | None = None,
- statistics: bool = False,
- row_group_size: int | None = None,
- data_pagesize_limit: int | None = None,
- maintain_order: bool = True,
- type_coercion: bool = True,
- predicate_pushdown: bool = True,
- projection_pushdown: bool = True,
- simplify_expression: bool = True,
- no_optimization: bool = False,
- slice_pushdown: bool = True,
Persists a LazyFrame at the provided path.
This allows streaming results that are larger than RAM to be written to disk.
- Parameters:
- path
File path to which the file should be written.
- compression{‘lz4’, ‘uncompressed’, ‘snappy’, ‘gzip’, ‘lzo’, ‘brotli’, ‘zstd’}
Choose “zstd” for good compression performance. Choose “lz4” for fast compression/decompression. Choose “snappy” for more backwards compatibility guarantees when you deal with older parquet readers.
- compression_level
The level of compression to use. Higher compression means smaller files on disk.
“gzip” : min-level: 0, max-level: 10.
“brotli” : min-level: 0, max-level: 11.
“zstd” : min-level: 1, max-level: 22.
- statistics
Write statistics to the parquet headers. This requires extra compute.
- row_group_size
Size of the row groups in number of rows. If None (default), the chunks of the DataFrame are used. Writing in smaller chunks may reduce memory pressure and improve writing speeds. If None and
use_pyarrow=True
, the row group size will be the minimum of the DataFrame size and 64 * 1024 * 1024.- data_pagesize_limit
Size limit of individual data pages. If not set defaults to 1024 * 1024 bytes
- maintain_order
Maintain the order in which data is processed. Setting this to False will be slightly faster.
- type_coercion
Do type coercion optimization.
- predicate_pushdown
Do predicate pushdown optimization.
- projection_pushdown
Do projection pushdown optimization.
- simplify_expression
Run simplify expressions optimization.
- no_optimization
Turn off (certain) optimizations.
- slice_pushdown
Slice pushdown optimization.
- Returns:
- DataFrame
Examples
>>> lf = pl.scan_csv("/path/to/my_larger_than_ram_file.csv") >>> lf.sink_parquet("out.parquet")
- slice(offset: int, length: int | None = None) Self [source]
Get a slice of this DataFrame.
- Parameters:
- offset
Start index. Negative indexing is supported.
- length
Length of the slice. If set to
None
, all rows starting at the offset will be selected.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": ["x", "y", "z"], ... "b": [1, 3, 5], ... "c": [2, 4, 6], ... } ... ) >>> lf.slice(1, 2).collect() shape: (2, 3) ┌─────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╡ │ y ┆ 3 ┆ 4 │ │ z ┆ 5 ┆ 6 │ └─────┴─────┴─────┘
- sort(
- by: IntoExpr | Iterable[IntoExpr],
- *more_by: IntoExpr,
- descending: bool | Sequence[bool] = False,
- nulls_last: bool = False,
- maintain_order: bool = False,
Sort the dataframe by the given columns.
- Parameters:
- by
Column(s) to sort by. Accepts expression input. Strings are parsed as column names.
- *more_by
Additional columns to sort by, specified as positional arguments.
- descending
Sort in descending order. When sorting by multiple columns, can be specified per column by passing a sequence of booleans.
- nulls_last
Place null values last.
- maintain_order
Whether the order should be maintained if elements are equal. Note that if true streaming is not possible and performance might be worse since this requires a stable search.
Examples
Pass a single column name to sort by that column.
>>> lf = pl.LazyFrame( ... { ... "a": [1, 2, None], ... "b": [6.0, 5.0, 4.0], ... "c": ["a", "c", "b"], ... } ... ) >>> lf.sort("a").collect() shape: (3, 3) ┌──────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ str │ ╞══════╪═════╪═════╡ │ null ┆ 4.0 ┆ b │ │ 1 ┆ 6.0 ┆ a │ │ 2 ┆ 5.0 ┆ c │ └──────┴─────┴─────┘
Sorting by expressions is also supported.
>>> lf.sort(pl.col("a") + pl.col("b") * 2, nulls_last=True).collect() shape: (3, 3) ┌──────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ str │ ╞══════╪═════╪═════╡ │ 2 ┆ 5.0 ┆ c │ │ 1 ┆ 6.0 ┆ a │ │ null ┆ 4.0 ┆ b │ └──────┴─────┴─────┘
Sort by multiple columns by passing a list of columns.
>>> lf.sort(["c", "a"], descending=True).collect() shape: (3, 3) ┌──────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ str │ ╞══════╪═════╪═════╡ │ 2 ┆ 5.0 ┆ c │ │ null ┆ 4.0 ┆ b │ │ 1 ┆ 6.0 ┆ a │ └──────┴─────┴─────┘
Or use positional arguments to sort by multiple columns in the same way.
>>> lf.sort("c", "a", descending=[False, True]).collect() shape: (3, 3) ┌──────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ str │ ╞══════╪═════╪═════╡ │ 1 ┆ 6.0 ┆ a │ │ null ┆ 4.0 ┆ b │ │ 2 ┆ 5.0 ┆ c │ └──────┴─────┴─────┘
- std(ddof: int = 1) Self [source]
Aggregate the columns in the LazyFrame to their standard deviation value.
- Parameters:
- ddof
“Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where N represents the number of elements. By default ddof is 1.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 2, 3, 4], ... "b": [1, 2, 1, 1], ... } ... ) >>> lf.std().collect() shape: (1, 2) ┌──────────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ f64 ┆ f64 │ ╞══════════╪═════╡ │ 1.290994 ┆ 0.5 │ └──────────┴─────┘ >>> lf.std(ddof=0).collect() shape: (1, 2) ┌──────────┬──────────┐ │ a ┆ b │ │ --- ┆ --- │ │ f64 ┆ f64 │ ╞══════════╪══════════╡ │ 1.118034 ┆ 0.433013 │ └──────────┴──────────┘
- sum() Self [source]
Aggregate the columns in the LazyFrame to their sum value.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 2, 3, 4], ... "b": [1, 2, 1, 1], ... } ... ) >>> lf.sum().collect() shape: (1, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 10 ┆ 5 │ └─────┴─────┘
- tail(n: int = 5) Self [source]
Get the last n rows.
- Parameters:
- n
Number of rows to return.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 2, 3, 4, 5, 6], ... "b": [7, 8, 9, 10, 11, 12], ... } ... ) >>> lf.tail().collect() shape: (5, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 2 ┆ 8 │ │ 3 ┆ 9 │ │ 4 ┆ 10 │ │ 5 ┆ 11 │ │ 6 ┆ 12 │ └─────┴─────┘ >>> lf.tail(2).collect() shape: (2, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 5 ┆ 11 │ │ 6 ┆ 12 │ └─────┴─────┘
- take_every(n: int) Self [source]
Take every nth row in the LazyFrame and return as a new LazyFrame.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 2, 3, 4], ... "b": [5, 6, 7, 8], ... } ... ) >>> lf.take_every(2).collect() shape: (2, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 5 │ │ 3 ┆ 7 │ └─────┴─────┘
- top_k(
- k: int,
- *,
- by: IntoExpr | Iterable[IntoExpr],
- descending: bool | Sequence[bool] = False,
- nulls_last: bool = False,
- maintain_order: bool = False,
Return the k largest elements.
If ‘descending=True` the smallest elements will be given.
- Parameters:
- k
Number of rows to return.
- by
Column(s) included in sort order. Accepts expression input. Strings are parsed as column names.
- descending
Return the ‘k’ smallest. Top-k by multiple columns can be specified per column by passing a sequence of booleans.
- nulls_last
Place null values last.
- maintain_order
Whether the order should be maintained if elements are equal. Note that if true streaming is not possible and performance might be worse since this requires a stable search.
See also
Examples
>>> lf = pl.LazyFrame( ... { ... "a": ["a", "b", "a", "b", "b", "c"], ... "b": [2, 1, 1, 3, 2, 1], ... } ... )
Get the rows which contain the 4 largest values in column b.
>>> lf.top_k(4, by="b").collect() shape: (4, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ str ┆ i64 │ ╞═════╪═════╡ │ b ┆ 3 │ │ a ┆ 2 │ │ b ┆ 2 │ │ b ┆ 1 │ └─────┴─────┘
Get the rows which contain the 4 largest values when sorting on column b and a.
>>> lf.top_k(4, by=["b", "a"]).collect() shape: (4, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ str ┆ i64 │ ╞═════╪═════╡ │ b ┆ 3 │ │ b ┆ 2 │ │ a ┆ 2 │ │ c ┆ 1 │ └─────┴─────┘
- unique(
- subset: ColumnNameOrSelector | Collection[ColumnNameOrSelector] | None = None,
- *,
- keep: UniqueKeepStrategy = 'any',
- maintain_order: bool = False,
Drop duplicate rows from this dataframe.
- Parameters:
- subset
Column name(s) or selector(s), to consider when identifying duplicate rows. If set to
None
(default), use all columns.- keep{‘first’, ‘last’, ‘any’, ‘none’}
Which of the duplicate rows to keep.
- ‘any’: Does not give any guarantee of which row is kept.
This allows more optimizations.
‘none’: Don’t keep duplicate rows.
‘first’: Keep first unique row.
‘last’: Keep last unique row.
- maintain_order
Keep the same order as the original DataFrame. This is more expensive to compute. Settings this to
True
blocks the possibility to run on the streaming engine.
- Returns:
- LazyFrame
LazyFrame with unique rows.
Warning
This method will fail if there is a column of type List in the DataFrame or subset.
Examples
>>> lf = pl.LazyFrame( ... { ... "foo": [1, 2, 3, 1], ... "bar": ["a", "a", "a", "a"], ... "ham": ["b", "b", "b", "b"], ... } ... ) >>> lf.unique(maintain_order=True).collect() shape: (3, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ ham │ │ --- ┆ --- ┆ --- │ │ i64 ┆ str ┆ str │ ╞═════╪═════╪═════╡ │ 1 ┆ a ┆ b │ │ 2 ┆ a ┆ b │ │ 3 ┆ a ┆ b │ └─────┴─────┴─────┘ >>> lf.unique(subset=["bar", "ham"], maintain_order=True).collect() shape: (1, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ ham │ │ --- ┆ --- ┆ --- │ │ i64 ┆ str ┆ str │ ╞═════╪═════╪═════╡ │ 1 ┆ a ┆ b │ └─────┴─────┴─────┘ >>> lf.unique(keep="last", maintain_order=True).collect() shape: (3, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ ham │ │ --- ┆ --- ┆ --- │ │ i64 ┆ str ┆ str │ ╞═════╪═════╪═════╡ │ 2 ┆ a ┆ b │ │ 3 ┆ a ┆ b │ │ 1 ┆ a ┆ b │ └─────┴─────┴─────┘
- unnest(columns: str | Sequence[str], *more_columns: str) Self [source]
Decompose struct columns into separate columns for each of their fields.
The new columns will be inserted into the dataframe at the location of the struct column.
- Parameters:
- columns
Name of the struct column(s) that should be unnested.
- *more_columns
Additional columns to unnest, specified as positional arguments.
Examples
>>> df = pl.LazyFrame( ... { ... "before": ["foo", "bar"], ... "t_a": [1, 2], ... "t_b": ["a", "b"], ... "t_c": [True, None], ... "t_d": [[1, 2], [3]], ... "after": ["baz", "womp"], ... } ... ).select("before", pl.struct(pl.col("^t_.$")).alias("t_struct"), "after") >>> df.collect() shape: (2, 3) ┌────────┬─────────────────────┬───────┐ │ before ┆ t_struct ┆ after │ │ --- ┆ --- ┆ --- │ │ str ┆ struct[4] ┆ str │ ╞════════╪═════════════════════╪═══════╡ │ foo ┆ {1,"a",true,[1, 2]} ┆ baz │ │ bar ┆ {2,"b",null,[3]} ┆ womp │ └────────┴─────────────────────┴───────┘ >>> df.unnest("t_struct").collect() shape: (2, 6) ┌────────┬─────┬─────┬──────┬───────────┬───────┐ │ before ┆ t_a ┆ t_b ┆ t_c ┆ t_d ┆ after │ │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ str ┆ bool ┆ list[i64] ┆ str │ ╞════════╪═════╪═════╪══════╪═══════════╪═══════╡ │ foo ┆ 1 ┆ a ┆ true ┆ [1, 2] ┆ baz │ │ bar ┆ 2 ┆ b ┆ null ┆ [3] ┆ womp │ └────────┴─────┴─────┴──────┴───────────┴───────┘
- update( ) Self [source]
Update the values in this LazyFrame with the non-null values in other.
- Parameters:
- other
LazyFrame that will be used to update the values
- on
Column names that will be joined on. If none given the row count is used.
- how{‘left’, ‘inner’}
‘left’ will keep the left table rows as is. ‘inner’ will remove rows that are not found in other
Warning
This functionality is experimental and may change without it being considered a breaking change.
Notes
This is syntactic sugar for a left/inner join + coalesce
Examples
>>> df = pl.DataFrame( ... { ... "A": [1, 2, 3, 4], ... "B": [400, 500, 600, 700], ... } ... ) >>> df shape: (4, 2) ┌─────┬─────┐ │ A ┆ B │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 400 │ │ 2 ┆ 500 │ │ 3 ┆ 600 │ │ 4 ┆ 700 │ └─────┴─────┘ >>> new_df = pl.DataFrame( ... { ... "B": [4, None, 6], ... "C": [7, 8, 9], ... } ... ) >>> new_df shape: (3, 2) ┌──────┬─────┐ │ B ┆ C │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞══════╪═════╡ │ 4 ┆ 7 │ │ null ┆ 8 │ │ 6 ┆ 9 │ └──────┴─────┘ >>> df.update(new_df) shape: (4, 2) ┌─────┬─────┐ │ A ┆ B │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═════╡ │ 1 ┆ 4 │ │ 2 ┆ 500 │ │ 3 ┆ 6 │ │ 4 ┆ 700 │ └─────┴─────┘
- var(ddof: int = 1) Self [source]
Aggregate the columns in the LazyFrame to their variance value.
- Parameters:
- ddof
“Delta Degrees of Freedom”: the divisor used in the calculation is N - ddof, where N represents the number of elements. By default ddof is 1.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 2, 3, 4], ... "b": [1, 2, 1, 1], ... } ... ) >>> lf.var().collect() shape: (1, 2) ┌──────────┬──────┐ │ a ┆ b │ │ --- ┆ --- │ │ f64 ┆ f64 │ ╞══════════╪══════╡ │ 1.666667 ┆ 0.25 │ └──────────┴──────┘ >>> lf.var(ddof=0).collect() shape: (1, 2) ┌──────┬────────┐ │ a ┆ b │ │ --- ┆ --- │ │ f64 ┆ f64 │ ╞══════╪════════╡ │ 1.25 ┆ 0.1875 │ └──────┴────────┘
- property width: int[source]
Get the width of the LazyFrame.
Examples
>>> lf = pl.LazyFrame( ... { ... "foo": [1, 2, 3], ... "bar": [4, 5, 6], ... } ... ) >>> lf.width 2
- with_columns(
- *exprs: IntoExpr | Iterable[IntoExpr],
- **named_exprs: IntoExpr,
Add columns to this DataFrame.
Added columns will replace existing columns with the same name.
- Parameters:
- *exprs
Column(s) to add, specified as positional arguments. Accepts expression input. Strings are parsed as column names, other non-expression inputs are parsed as literals.
- **named_exprs
Additional columns to add, specified as keyword arguments. The columns will be renamed to the keyword used.
- Returns:
- LazyFrame
A new LazyFrame with the columns added.
Notes
Creating a new LazyFrame using this method does not create a new copy of existing data.
Examples
Pass an expression to add it as a new column.
>>> lf = pl.LazyFrame( ... { ... "a": [1, 2, 3, 4], ... "b": [0.5, 4, 10, 13], ... "c": [True, True, False, True], ... } ... ) >>> lf.with_columns((pl.col("a") ** 2).alias("a^2")).collect() shape: (4, 4) ┌─────┬──────┬───────┬──────┐ │ a ┆ b ┆ c ┆ a^2 │ │ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ bool ┆ f64 │ ╞═════╪══════╪═══════╪══════╡ │ 1 ┆ 0.5 ┆ true ┆ 1.0 │ │ 2 ┆ 4.0 ┆ true ┆ 4.0 │ │ 3 ┆ 10.0 ┆ false ┆ 9.0 │ │ 4 ┆ 13.0 ┆ true ┆ 16.0 │ └─────┴──────┴───────┴──────┘
Added columns will replace existing columns with the same name.
>>> lf.with_columns(pl.col("a").cast(pl.Float64)).collect() shape: (4, 3) ┌─────┬──────┬───────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ f64 ┆ f64 ┆ bool │ ╞═════╪══════╪═══════╡ │ 1.0 ┆ 0.5 ┆ true │ │ 2.0 ┆ 4.0 ┆ true │ │ 3.0 ┆ 10.0 ┆ false │ │ 4.0 ┆ 13.0 ┆ true │ └─────┴──────┴───────┘
Multiple columns can be added by passing a list of expressions.
>>> lf.with_columns( ... [ ... (pl.col("a") ** 2).alias("a^2"), ... (pl.col("b") / 2).alias("b/2"), ... (pl.col("c").is_not()).alias("not c"), ... ] ... ).collect() shape: (4, 6) ┌─────┬──────┬───────┬──────┬──────┬───────┐ │ a ┆ b ┆ c ┆ a^2 ┆ b/2 ┆ not c │ │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ bool ┆ f64 ┆ f64 ┆ bool │ ╞═════╪══════╪═══════╪══════╪══════╪═══════╡ │ 1 ┆ 0.5 ┆ true ┆ 1.0 ┆ 0.25 ┆ false │ │ 2 ┆ 4.0 ┆ true ┆ 4.0 ┆ 2.0 ┆ false │ │ 3 ┆ 10.0 ┆ false ┆ 9.0 ┆ 5.0 ┆ true │ │ 4 ┆ 13.0 ┆ true ┆ 16.0 ┆ 6.5 ┆ false │ └─────┴──────┴───────┴──────┴──────┴───────┘
Multiple columns also can be added using positional arguments instead of a list.
>>> lf.with_columns( ... (pl.col("a") ** 2).alias("a^2"), ... (pl.col("b") / 2).alias("b/2"), ... (pl.col("c").is_not()).alias("not c"), ... ).collect() shape: (4, 6) ┌─────┬──────┬───────┬──────┬──────┬───────┐ │ a ┆ b ┆ c ┆ a^2 ┆ b/2 ┆ not c │ │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ bool ┆ f64 ┆ f64 ┆ bool │ ╞═════╪══════╪═══════╪══════╪══════╪═══════╡ │ 1 ┆ 0.5 ┆ true ┆ 1.0 ┆ 0.25 ┆ false │ │ 2 ┆ 4.0 ┆ true ┆ 4.0 ┆ 2.0 ┆ false │ │ 3 ┆ 10.0 ┆ false ┆ 9.0 ┆ 5.0 ┆ true │ │ 4 ┆ 13.0 ┆ true ┆ 16.0 ┆ 6.5 ┆ false │ └─────┴──────┴───────┴──────┴──────┴───────┘
Use keyword arguments to easily name your expression inputs.
>>> lf.with_columns( ... ab=pl.col("a") * pl.col("b"), ... not_c=pl.col("c").is_not(), ... ).collect() shape: (4, 5) ┌─────┬──────┬───────┬──────┬───────┐ │ a ┆ b ┆ c ┆ ab ┆ not_c │ │ --- ┆ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ bool ┆ f64 ┆ bool │ ╞═════╪══════╪═══════╪══════╪═══════╡ │ 1 ┆ 0.5 ┆ true ┆ 0.5 ┆ false │ │ 2 ┆ 4.0 ┆ true ┆ 8.0 ┆ false │ │ 3 ┆ 10.0 ┆ false ┆ 30.0 ┆ true │ │ 4 ┆ 13.0 ┆ true ┆ 52.0 ┆ false │ └─────┴──────┴───────┴──────┴───────┘
Expressions with multiple outputs can be automatically instantiated as Structs by enabling the experimental setting
Config.set_auto_structify(True)
:>>> with pl.Config(auto_structify=True): ... lf.drop("c").with_columns( ... diffs=pl.col(["a", "b"]).diff().suffix("_diff"), ... ).collect() ... shape: (4, 3) ┌─────┬──────┬─────────────┐ │ a ┆ b ┆ diffs │ │ --- ┆ --- ┆ --- │ │ i64 ┆ f64 ┆ struct[2] │ ╞═════╪══════╪═════════════╡ │ 1 ┆ 0.5 ┆ {null,null} │ │ 2 ┆ 4.0 ┆ {1,3.5} │ │ 3 ┆ 10.0 ┆ {1,6.0} │ │ 4 ┆ 13.0 ┆ {1,3.0} │ └─────┴──────┴─────────────┘
- with_columns_seq(
- *exprs: IntoExpr | Iterable[IntoExpr],
- **named_exprs: IntoExpr,
Add columns to this DataFrame.
Added columns will replace existing columns with the same name.
This will run all expression sequentially instead of in parallel. Use this when the work per expression is cheap.
- Parameters:
- *exprs
Column(s) to add, specified as positional arguments. Accepts expression input. Strings are parsed as column names, other non-expression inputs are parsed as literals.
- **named_exprs
Additional columns to add, specified as keyword arguments. The columns will be renamed to the keyword used.
- Returns:
- LazyFrame
A new LazyFrame with the columns added.
See also
- with_context(other: Self | list[Self]) Self [source]
Add an external context to the computation graph.
This allows expressions to also access columns from DataFrames that are not part of this one.
- Parameters:
- other
Lazy DataFrame to join with.
Examples
>>> lf = pl.LazyFrame({"a": [1, 2, 3], "b": ["a", "c", None]}) >>> lf_other = pl.LazyFrame({"c": ["foo", "ham"]}) >>> lf.with_context(lf_other).select( ... pl.col("b") + pl.col("c").first() ... ).collect() shape: (3, 1) ┌──────┐ │ b │ │ --- │ │ str │ ╞══════╡ │ afoo │ │ cfoo │ │ null │ └──────┘
Fill nulls with the median from another dataframe:
>>> train_lf = pl.LazyFrame( ... {"feature_0": [-1.0, 0, 1], "feature_1": [-1.0, 0, 1]} ... ) >>> test_lf = pl.LazyFrame( ... {"feature_0": [-1.0, None, 1], "feature_1": [-1.0, 0, 1]} ... ) >>> test_lf.with_context(train_lf.select(pl.all().suffix("_train"))).select( ... pl.col("feature_0").fill_null(pl.col("feature_0_train").median()) ... ).collect() shape: (3, 1) ┌───────────┐ │ feature_0 │ │ --- │ │ f64 │ ╞═══════════╡ │ -1.0 │ │ 0.0 │ │ 1.0 │ └───────────┘
- with_row_count(name: str = 'row_nr', offset: int = 0) Self [source]
Add a column at index 0 that counts the rows.
- Parameters:
- name
Name of the column to add.
- offset
Start the row count at this offset.
Warning
This can have a negative effect on query performance. This may, for instance, block predicate pushdown optimization.
Examples
>>> lf = pl.LazyFrame( ... { ... "a": [1, 3, 5], ... "b": [2, 4, 6], ... } ... ) >>> lf.with_row_count().collect() shape: (3, 3) ┌────────┬─────┬─────┐ │ row_nr ┆ a ┆ b │ │ --- ┆ --- ┆ --- │ │ u32 ┆ i64 ┆ i64 │ ╞════════╪═════╪═════╡ │ 0 ┆ 1 ┆ 2 │ │ 1 ┆ 3 ┆ 4 │ │ 2 ┆ 5 ┆ 6 │ └────────┴─────┴─────┘