polars.Expr.value_counts#
- Expr.value_counts(*, multithreaded: bool = False, sort: bool = False) Self [source]#
Count all unique values and create a struct mapping value to count.
- Parameters:
- multithreaded:
Better to turn this off in the aggregation context, as it can lead to contention.
- sort:
Ensure the output is sorted from most values to least.
- Returns:
- Expr
Expression of data type
Struct
.
Examples
>>> df = pl.DataFrame( ... { ... "id": ["a", "b", "b", "c", "c", "c"], ... } ... ) >>> df.select( ... [ ... pl.col("id").value_counts(sort=True), ... ] ... ) shape: (3, 1) ┌───────────┐ │ id │ │ --- │ │ struct[2] │ ╞═══════════╡ │ {"c",3} │ │ {"b",2} │ │ {"a",1} │ └───────────┘