polars.col#
- polars.col(
- name: str | PolarsDataType | Iterable[str] | Iterable[PolarsDataType],
- *more_names: str | PolarsDataType,
Return an expression representing column(s) in a dataframe.
- Parameters:
- name
The name or datatype of the column(s) to represent. Accepts regular expression input. Regular expressions should start with
^
and end with$
.- *more_names
Additional names or datatypes of columns to represent, specified as positional arguments.
Examples
Pass a single column name to represent that column.
>>> df = pl.DataFrame( ... { ... "ham": [1, 2, 3], ... "hamburger": [11, 22, 33], ... "foo": [3, 2, 1], ... "bar": ["a", "b", "c"], ... } ... ) >>> df.select(pl.col("foo")) shape: (3, 1) ┌─────┐ │ foo │ │ --- │ │ i64 │ ╞═════╡ │ 3 │ │ 2 │ │ 1 │ └─────┘
Use the wildcard
*
to represent all columns.>>> df.select(pl.col("*")) shape: (3, 4) ┌─────┬───────────┬─────┬─────┐ │ ham ┆ hamburger ┆ foo ┆ bar │ │ --- ┆ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 ┆ str │ ╞═════╪═══════════╪═════╪═════╡ │ 1 ┆ 11 ┆ 3 ┆ a │ │ 2 ┆ 22 ┆ 2 ┆ b │ │ 3 ┆ 33 ┆ 1 ┆ c │ └─────┴───────────┴─────┴─────┘ >>> df.select(pl.col("*").exclude("ham")) shape: (3, 3) ┌───────────┬─────┬─────┐ │ hamburger ┆ foo ┆ bar │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ str │ ╞═══════════╪═════╪═════╡ │ 11 ┆ 3 ┆ a │ │ 22 ┆ 2 ┆ b │ │ 33 ┆ 1 ┆ c │ └───────────┴─────┴─────┘
Regular expression input is supported.
>>> df.select(pl.col("^ham.*$")) shape: (3, 2) ┌─────┬───────────┐ │ ham ┆ hamburger │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═════╪═══════════╡ │ 1 ┆ 11 │ │ 2 ┆ 22 │ │ 3 ┆ 33 │ └─────┴───────────┘
Multiple columns can be represented by passing a list of names.
>>> df.select(pl.col(["hamburger", "foo"])) shape: (3, 2) ┌───────────┬─────┐ │ hamburger ┆ foo │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═══════════╪═════╡ │ 11 ┆ 3 │ │ 22 ┆ 2 │ │ 33 ┆ 1 │ └───────────┴─────┘
Or use positional arguments to represent multiple columns in the same way.
>>> df.select(pl.col("hamburger", "foo")) shape: (3, 2) ┌───────────┬─────┐ │ hamburger ┆ foo │ │ --- ┆ --- │ │ i64 ┆ i64 │ ╞═══════════╪═════╡ │ 11 ┆ 3 │ │ 22 ┆ 2 │ │ 33 ┆ 1 │ └───────────┴─────┘
Easily select all columns that match a certain data type by passing that datatype.
>>> df.select(pl.col(pl.Utf8)) shape: (3, 1) ┌─────┐ │ bar │ │ --- │ │ str │ ╞═════╡ │ a │ │ b │ │ c │ └─────┘ >>> df.select(pl.col(pl.Int64, pl.Float64)) shape: (3, 3) ┌─────┬───────────┬─────┐ │ ham ┆ hamburger ┆ foo │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 │ ╞═════╪═══════════╪═════╡ │ 1 ┆ 11 ┆ 3 │ │ 2 ┆ 22 ┆ 2 │ │ 3 ┆ 33 ┆ 1 │ └─────┴───────────┴─────┘