polars.dataframe.groupby.GroupBy.agg#
- GroupBy.agg(*aggs: IntoExpr | Iterable[IntoExpr], **named_aggs: IntoExpr) DataFrame [source]#
Compute aggregations for each group of a groupby operation.
- Parameters:
- *aggs
Aggregations to compute for each group of the groupby operation, specified as positional arguments. Accepts expression input. Strings are parsed as column names.
- **named_aggs
Additional aggregations, specified as keyword arguments. The resulting columns will be renamed to the keyword used.
Examples
Compute the aggregation of the columns for each group.
>>> df = pl.DataFrame( ... { ... "a": ["a", "b", "a", "b", "c"], ... "b": [1, 2, 1, 3, 3], ... "c": [5, 4, 3, 2, 1], ... } ... ) >>> df.groupby("a").agg([pl.col("b"), pl.col("c")]) shape: (3, 3) ┌─────┬───────────┬───────────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ str ┆ list[i64] ┆ list[i64] │ ╞═════╪═══════════╪═══════════╡ │ a ┆ [1, 1] ┆ [5, 3] │ ├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤ │ b ┆ [2, 3] ┆ [4, 2] │ ├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤ │ c ┆ [3] ┆ [1] │ └─────┴───────────┴───────────┘
Compute the sum of a column for each group.
>>> df.groupby("a").agg(pl.col("b").sum()) shape: (3, 2) ┌─────┬─────┐ │ a ┆ b │ │ --- ┆ --- │ │ str ┆ i64 │ ╞═════╪═════╡ │ a ┆ 2 │ │ b ┆ 5 │ │ c ┆ 3 │ └─────┴─────┘
Compute multiple aggregates at once by passing a list of expressions.
>>> df.groupby("a").agg([pl.sum("b"), pl.mean("c")]) shape: (3, 3) ┌─────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ f64 │ ╞═════╪═════╪═════╡ │ c ┆ 3 ┆ 1.0 │ │ a ┆ 2 ┆ 4.0 │ │ b ┆ 5 ┆ 3.0 │ └─────┴─────┴─────┘
Or use positional arguments to compute multiple aggregations in the same way.
>>> df.groupby("a").agg( ... pl.sum("b").suffix("_sum"), ... (pl.col("c") ** 2).mean().suffix("_mean_squared"), ... ) shape: (3, 3) ┌─────┬───────┬────────────────┐ │ a ┆ b_sum ┆ c_mean_squared │ │ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ f64 │ ╞═════╪═══════╪════════════════╡ │ a ┆ 2 ┆ 17.0 │ │ c ┆ 3 ┆ 1.0 │ │ b ┆ 5 ┆ 10.0 │ └─────┴───────┴────────────────┘
Use keyword arguments to easily name your expression inputs.
>>> df.groupby("a").agg( ... b_sum=pl.sum("b"), ... c_mean_squared=(pl.col("c") ** 2).mean(), ... ) shape: (3, 3) ┌─────┬───────┬────────────────┐ │ a ┆ b_sum ┆ c_mean_squared │ │ --- ┆ --- ┆ --- │ │ str ┆ i64 ┆ f64 │ ╞═════╪═══════╪════════════════╡ │ a ┆ 2 ┆ 17.0 │ │ c ┆ 3 ┆ 1.0 │ │ b ┆ 5 ┆ 10.0 │ └─────┴───────┴────────────────┘