polars.cumfold#
- polars.cumfold(
- acc: IntoExpr,
- function: Callable[[Series, Series], Series],
- exprs: Sequence[Expr | str] | Expr,
- *,
- include_init: bool = False,
Cumulatively accumulate over multiple columns horizontally/ row wise with a left fold.
Every cumulative result is added as a separate field in a Struct column.
- Parameters:
- acc
Accumulator Expression. This is the value that will be initialized when the fold starts. For a sum this could for instance be lit(0).
- function
Function to apply over the accumulator and the value. Fn(acc, value) -> new_value
- exprs
Expressions to aggregate over. May also be a wildcard expression.
- include_init
Include the initial accumulator state as struct field.
Notes
If you simply want the first encountered expression as accumulator, consider using
cumreduce
.Examples
>>> df = pl.DataFrame( ... { ... "a": [1, 2, 3], ... "b": [3, 4, 5], ... "c": [5, 6, 7], ... } ... ) >>> df shape: (3, 3) ┌─────┬─────┬─────┐ │ a ┆ b ┆ c │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╡ │ 1 ┆ 3 ┆ 5 │ │ 2 ┆ 4 ┆ 6 │ │ 3 ┆ 5 ┆ 7 │ └─────┴─────┴─────┘
>>> df.select( ... pl.cumfold( ... acc=pl.lit(1), function=lambda acc, x: acc + x, exprs=pl.col("*") ... ).alias("cumfold"), ... ) shape: (3, 1) ┌───────────┐ │ cumfold │ │ --- │ │ struct[3] │ ╞═══════════╡ │ {2,5,10} │ │ {3,7,13} │ │ {4,9,16} │ └───────────┘