polars.LazyFrame.explain#

LazyFrame.explain(
*,
optimized: bool = True,
type_coercion: bool = True,
predicate_pushdown: bool = True,
projection_pushdown: bool = True,
simplify_expression: bool = True,
slice_pushdown: bool = True,
comm_subplan_elim: bool = True,
comm_subexpr_elim: bool = True,
streaming: bool = False,
) str[source]#

Create a string representation of the query plan.

Different optimizations can be turned on or off.

Parameters:
optimized

Return an optimized query plan. Defaults to False. If this is set to True the subsequent optimization flags control which optimizations run.

type_coercion

Do type coercion optimization.

predicate_pushdown

Do predicate pushdown optimization.

projection_pushdown

Do projection pushdown optimization.

simplify_expression

Run simplify expressions optimization.

slice_pushdown

Slice pushdown optimization.

comm_subplan_elim

Will try to cache branching subplans that occur on self-joins or unions.

comm_subexpr_elim

Common subexpressions will be cached and reused.

streaming

Run parts of the query in a streaming fashion (this is in an alpha state)

Examples

>>> lf = pl.LazyFrame(
...     {
...         "a": ["a", "b", "a", "b", "b", "c"],
...         "b": [1, 2, 3, 4, 5, 6],
...         "c": [6, 5, 4, 3, 2, 1],
...     }
... )
>>> lf.groupby("a", maintain_order=True).agg(pl.all().sum()).sort(
...     "a"
... ).explain()