SELECT
In Polars SQL, the SELECT
statement is used to retrieve data from a table into a DataFrame
. The basic syntax of a SELECT
statement in Polars SQL is as follows:
SELECT column1, column2, ...
FROM table_name;
Here, column1
, column2
, etc. are the columns that you want to select from the table. You can also use the wildcard *
to select all columns. table_name
is the name of the table or that you want to retrieve data from. In the sections below we will cover some of the more common SELECT variants
df = pl.DataFrame(
{
"city": [
"New York",
"Los Angeles",
"Chicago",
"Houston",
"Phoenix",
"Amsterdam",
],
"country": ["USA", "USA", "USA", "USA", "USA", "Netherlands"],
"population": [8399000, 3997000, 2705000, 2320000, 1680000, 900000],
}
)
ctx = pl.SQLContext(population=df, eager=True)
print(ctx.execute("SELECT * FROM population"))
shape: (6, 3)
┌─────────────┬─────────────┬────────────┐
│ city ┆ country ┆ population │
│ --- ┆ --- ┆ --- │
│ str ┆ str ┆ i64 │
╞═════════════╪═════════════╪════════════╡
│ New York ┆ USA ┆ 8399000 │
│ Los Angeles ┆ USA ┆ 3997000 │
│ Chicago ┆ USA ┆ 2705000 │
│ Houston ┆ USA ┆ 2320000 │
│ Phoenix ┆ USA ┆ 1680000 │
│ Amsterdam ┆ Netherlands ┆ 900000 │
└─────────────┴─────────────┴────────────┘
GROUP BY
The GROUP BY
statement is used to group rows in a table by one or more columns and compute aggregate functions on each group.
result = ctx.execute(
"""
SELECT country, AVG(population) as avg_population
FROM population
GROUP BY country
"""
)
print(result)
shape: (2, 2)
┌─────────────┬────────────────┐
│ country ┆ avg_population │
│ --- ┆ --- │
│ str ┆ f64 │
╞═════════════╪════════════════╡
│ Netherlands ┆ 900000.0 │
│ USA ┆ 3.8202e6 │
└─────────────┴────────────────┘
ORDER BY
The ORDER BY
statement is used to sort the result set of a query by one or more columns in ascending or descending order.
result = ctx.execute(
"""
SELECT city, population
FROM population
ORDER BY population
"""
)
print(result)
shape: (6, 2)
┌─────────────┬────────────┐
│ city ┆ population │
│ --- ┆ --- │
│ str ┆ i64 │
╞═════════════╪════════════╡
│ Amsterdam ┆ 900000 │
│ Phoenix ┆ 1680000 │
│ Houston ┆ 2320000 │
│ Chicago ┆ 2705000 │
│ Los Angeles ┆ 3997000 │
│ New York ┆ 8399000 │
└─────────────┴────────────┘
JOIN
income = pl.DataFrame(
{
"city": [
"New York",
"Los Angeles",
"Chicago",
"Houston",
"Amsterdam",
"Rotterdam",
"Utrecht",
],
"country": [
"USA",
"USA",
"USA",
"USA",
"Netherlands",
"Netherlands",
"Netherlands",
],
"income": [55000, 62000, 48000, 52000, 42000, 38000, 41000],
}
)
ctx.register_many(income=income)
result = ctx.execute(
"""
SELECT country, city, income, population
FROM population
LEFT JOIN income on population.city = income.city
"""
)
print(result)
shape: (6, 4)
┌─────────────┬─────────────┬────────┬────────────┐
│ country ┆ city ┆ income ┆ population │
│ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ i64 ┆ i64 │
╞═════════════╪═════════════╪════════╪════════════╡
│ USA ┆ New York ┆ 55000 ┆ 8399000 │
│ USA ┆ Los Angeles ┆ 62000 ┆ 3997000 │
│ USA ┆ Chicago ┆ 48000 ┆ 2705000 │
│ USA ┆ Houston ┆ 52000 ┆ 2320000 │
│ USA ┆ Phoenix ┆ null ┆ 1680000 │
│ Netherlands ┆ Amsterdam ┆ 42000 ┆ 900000 │
└─────────────┴─────────────┴────────┴────────────┘
Functions
Polars provides a wide range of SQL functions, including:
- Mathematical functions:
ABS
,EXP
,LOG
,ASIN
,ACOS
,ATAN
, etc. - String functions:
LOWER
,UPPER
,LTRIM
,RTRIM
,STARTS_WITH
,ENDS_WITH
. - Aggregation functions:
SUM
,AVG
,MIN
,MAX
,COUNT
,STDDEV
,FIRST
etc. - Array functions:
EXPLODE
,UNNEST
,ARRAY_SUM
,ARRAY_REVERSE
, etc.
For a full list of supported functions go the API documentation. The example below demonstrates how to use a function in a query
result = ctx.execute(
"""
SELECT city, population
FROM population
WHERE STARTS_WITH(country,'U')
"""
)
print(result)
shape: (5, 2)
┌─────────────┬────────────┐
│ city ┆ population │
│ --- ┆ --- │
│ str ┆ i64 │
╞═════════════╪════════════╡
│ New York ┆ 8399000 │
│ Los Angeles ┆ 3997000 │
│ Chicago ┆ 2705000 │
│ Houston ┆ 2320000 │
│ Phoenix ┆ 1680000 │
└─────────────┴────────────┘
Table Functions
In the examples earlier we first generated a DataFrame which we registered in the SQLContext
. Polars also support directly reading from CSV, Parquet, JSON and IPC in your SQL query using table functions read_xxx
.
result = ctx.execute(
"""
SELECT *
FROM read_csv('docs/data/iris.csv')
"""
)
print(result)
shape: (150, 5)
┌──────────────┬─────────────┬──────────────┬─────────────┬───────────┐
│ sepal_length ┆ sepal_width ┆ petal_length ┆ petal_width ┆ species │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ f64 ┆ f64 ┆ f64 ┆ f64 ┆ str │
╞══════════════╪═════════════╪══════════════╪═════════════╪═══════════╡
│ 5.1 ┆ 3.5 ┆ 1.4 ┆ 0.2 ┆ Setosa │
│ 4.9 ┆ 3.0 ┆ 1.4 ┆ 0.2 ┆ Setosa │
│ 4.7 ┆ 3.2 ┆ 1.3 ┆ 0.2 ┆ Setosa │
│ 4.6 ┆ 3.1 ┆ 1.5 ┆ 0.2 ┆ Setosa │
│ 5.0 ┆ 3.6 ┆ 1.4 ┆ 0.2 ┆ Setosa │
│ … ┆ … ┆ … ┆ … ┆ … │
│ 6.7 ┆ 3.0 ┆ 5.2 ┆ 2.3 ┆ Virginica │
│ 6.3 ┆ 2.5 ┆ 5.0 ┆ 1.9 ┆ Virginica │
│ 6.5 ┆ 3.0 ┆ 5.2 ┆ 2.0 ┆ Virginica │
│ 6.2 ┆ 3.4 ┆ 5.4 ┆ 2.3 ┆ Virginica │
│ 5.9 ┆ 3.0 ┆ 5.1 ┆ 1.8 ┆ Virginica │
└──────────────┴─────────────┴──────────────┴─────────────┴───────────┘