polars.col#
Create an expression representing column(s) in a dataframe.
col is technically not a function, but it can be used like one.
See the class documentation below for examples and further documentation.
- class polars.functions.col.ColumnFactory(
- name: str | PolarsDataType | Iterable[str] | Iterable[PolarsDataType],
- *more_names: str | PolarsDataType,
- Create Polars column expressions. - Notes - An instance of this class is exported under the name - col. It can be used as though it were a function by calling, for example,- pl.col("foo"). See the- __call__()method for further documentation.- This helper class enables an alternative syntax for creating a column expression through attribute lookup. For example - col.foocreates an expression equal to- col("foo"). See the- __getattr__()method for further documentation.- The function call syntax is considered the idiomatic way of constructing a column expression. The alternative attribute syntax can be useful for quick prototyping as it can save some keystrokes, but has drawbacks in both expressiveness and readability. - Examples - >>> from polars import col >>> df = pl.DataFrame( ... { ... "foo": [1, 2], ... "bar": [3, 4], ... } ... ) - Create a new column expression using the standard syntax: - >>> df.with_columns(baz=(col("foo") * col("bar")) / 2) shape: (2, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ baz │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ f64 │ ╞═════╪═════╪═════╡ │ 1 ┆ 3 ┆ 1.5 │ │ 2 ┆ 4 ┆ 4.0 │ └─────┴─────┴─────┘ - Use attribute lookup to create a new column expression: - >>> df.with_columns(baz=(col.foo + col.bar)) shape: (2, 3) ┌─────┬─────┬─────┐ │ foo ┆ bar ┆ baz │ │ --- ┆ --- ┆ --- │ │ i64 ┆ i64 ┆ i64 │ ╞═════╪═════╪═════╡ │ 1 ┆ 3 ┆ 4 │ │ 2 ┆ 4 ┆ 6 │ └─────┴─────┴─────┘ - Methods: - __call__- Call self as a function. - __getattr__- Create a column expression using attribute syntax. - __call__(
- name: str | PolarsDataType | Iterable[str] | Iterable[PolarsDataType],
- *more_names: str | PolarsDataType,
- Call self as a function. 
 - __getattr__(name: str) Expr[source]
- Create a column expression using attribute syntax. - Note that this syntax does not support passing data types or multiple column names. - Parameters:
- name
- The name of the column to represent. 
 
 - Examples - >>> from polars import col as c >>> df = pl.DataFrame( ... { ... "foo": [1, 2], ... "bar": [3, 4], ... } ... ) >>> df.select(c.foo + c.bar) shape: (2, 1) ┌─────┐ │ foo │ │ --- │ │ i64 │ ╞═════╡ │ 4 │ │ 6 │ └─────┘