polars.DataFrame.rows#
- DataFrame.rows(*, named: Literal[False] = False) list[tuple[Any, ...]][source]#
- DataFrame.rows(*, named: Literal[True]) list[dict[str, Any]]
- Returns all data in the DataFrame as a list of rows of python-native values. - Parameters:
- named
- Return dictionaries instead of tuples. The dictionaries are a mapping of column name to row value. This is more expensive than returning a regular tuple, but allows for accessing values by column name. 
 
- Returns:
- list of tuples (default) or dictionaries of row values
 
 - Warning - Row-iteration is not optimal as the underlying data is stored in columnar form; where possible, prefer export via one of the dedicated export/output methods. Where possible you should also consider using - iter_rowsinstead to avoid materialising all the data at once.- See also - iter_rows
- Row iterator over frame data (does not materialise all rows). 
- rows_by_key
- Materialises frame data as a key-indexed dictionary. 
 - Notes - If you have - ns-precision temporal values you should be aware that Python natively only supports up to- μs-precision;- ns-precision values will be truncated to microseconds on conversion to Python. If this matters to your use-case you should export to a different format (such as Arrow or NumPy).- Examples - >>> df = pl.DataFrame( ... { ... "x": ["a", "b", "b", "a"], ... "y": [1, 2, 3, 4], ... "z": [0, 3, 6, 9], ... } ... ) >>> df.rows() [('a', 1, 0), ('b', 2, 3), ('b', 3, 6), ('a', 4, 9)] >>> df.rows(named=True) [{'x': 'a', 'y': 1, 'z': 0}, {'x': 'b', 'y': 2, 'z': 3}, {'x': 'b', 'y': 3, 'z': 6}, {'x': 'a', 'y': 4, 'z': 9}]