polars.Expr.value_counts#
- Expr.value_counts(*, sort: bool = False, parallel: bool = False) Self[source]#
- Count the occurrences of unique values. - Parameters:
- sort
- Sort the output by count in descending order. If set to - False(default), the order of the output is random.
- parallel
- Execute the computation in parallel. - Note - This option should likely not be enabled in a group by context, as the computation is already parallelized per group. 
 
- Returns:
- Expr
- Expression of data type - Structwith mapping of unique values to their count.
 
 - Examples - >>> df = pl.DataFrame( ... {"color": ["red", "blue", "red", "green", "blue", "blue"]} ... ) >>> df.select(pl.col("color").value_counts()) shape: (3, 1) ┌─────────────┐ │ color │ │ --- │ │ struct[2] │ ╞═════════════╡ │ {"red",2} │ │ {"green",1} │ │ {"blue",3} │ └─────────────┘ - Sort the output by count. - >>> df.select(pl.col("color").value_counts(sort=True)) shape: (3, 1) ┌─────────────┐ │ color │ │ --- │ │ struct[2] │ ╞═════════════╡ │ {"blue",3} │ │ {"red",2} │ │ {"green",1} │ └─────────────┘