polars.testing.parametric.column#
- class polars.testing.parametric.column(
- name: str,
- dtype: PolarsDataType | None = None,
- strategy: SearchStrategy[Any] | None = None,
- null_probability: float | None = None,
- unique: bool = False,
- Define a column for use with the @dataframes strategy. - Parameters:
- namestr
- string column name. 
- dtypePolarsDataType
- a recognised polars dtype. 
- strategystrategy, optional
- supports overriding the default strategy for the given dtype. 
- null_probabilityfloat, optional
- percentage chance (expressed between 0.0 => 1.0) that a generated value is None. this is applied independently of any None values generated by the underlying strategy. 
- uniquebool, optional
- flag indicating that all values generated for the column should be unique. 
 
 - Examples - >>> from hypothesis.strategies import sampled_from >>> from polars.testing.parametric import column >>> >>> column(name="unique_small_ints", dtype=pl.UInt8, unique=True) column(name='unique_small_ints', dtype=UInt8, strategy=None, null_probability=None, unique=True) >>> column(name="ccy", strategy=sampled_from(["GBP", "EUR", "JPY"])) column(name='ccy', dtype=Utf8, strategy=sampled_from(['GBP', 'EUR', 'JPY']), null_probability=None, unique=False) - __init__(
- name: str,
- dtype: PolarsDataType | None = None,
- strategy: SearchStrategy[Any] | None = None,
- null_probability: float | None = None,
- unique: bool = False,
 - Methods - __init__(name[, dtype, strategy, ...])- Attributes - dtype- null_probability- strategy- unique- name