1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
use core::slice::SliceIndex;
use std::cmp::Ordering;
use std::mem::MaybeUninit;
use std::ops::Range;

pub trait SliceAble {
    /// # Safety
    /// no bound checks.
    unsafe fn slice_unchecked(&self, range: Range<usize>) -> Self;

    fn slice(&self, range: Range<usize>) -> Self;
}

impl<T> SliceAble for &[T] {
    unsafe fn slice_unchecked(&self, range: Range<usize>) -> Self {
        self.get_unchecked_release(range)
    }

    fn slice(&self, range: Range<usize>) -> Self {
        self.get(range).unwrap()
    }
}

pub trait Extrema<T> {
    fn min_value(&self) -> Option<&T>;
    fn max_value(&self) -> Option<&T>;
}

impl<T: PartialOrd> Extrema<T> for [T] {
    fn min_value(&self) -> Option<&T> {
        self.iter()
            .min_by(|a, b| a.partial_cmp(b).unwrap_or(Ordering::Equal))
    }

    fn max_value(&self) -> Option<&T> {
        self.iter()
            .max_by(|a, b| a.partial_cmp(b).unwrap_or(Ordering::Equal))
    }
}

pub trait SortedSlice<T> {
    fn is_sorted_ascending(&self) -> bool;
}

impl<T: PartialOrd + Copy> SortedSlice<T> for [T] {
    fn is_sorted_ascending(&self) -> bool {
        if self.is_empty() {
            true
        } else {
            let mut previous = self[0];
            let mut sorted = true;

            // don't early stop or branch
            // so it autovectorizes
            for &v in &self[1..] {
                sorted &= previous <= v;
                previous = v;
            }
            sorted
        }
    }
}

pub trait GetSaferUnchecked<T> {
    /// # Safety
    ///
    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
    /// even if the resulting reference is not used.
    unsafe fn get_unchecked_release<I>(&self, index: I) -> &<I as SliceIndex<[T]>>::Output
    where
        I: SliceIndex<[T]>;

    /// # Safety
    ///
    /// Calling this method with an out-of-bounds index is *[undefined behavior]*
    /// even if the resulting reference is not used.
    unsafe fn get_unchecked_release_mut<I>(
        &mut self,
        index: I,
    ) -> &mut <I as SliceIndex<[T]>>::Output
    where
        I: SliceIndex<[T]>;
}

impl<T> GetSaferUnchecked<T> for [T] {
    #[inline(always)]
    unsafe fn get_unchecked_release<I>(&self, index: I) -> &<I as SliceIndex<[T]>>::Output
    where
        I: SliceIndex<[T]>,
    {
        if cfg!(debug_assertions) {
            &self[index]
        } else {
            self.get_unchecked(index)
        }
    }

    #[inline(always)]
    unsafe fn get_unchecked_release_mut<I>(
        &mut self,
        index: I,
    ) -> &mut <I as SliceIndex<[T]>>::Output
    where
        I: SliceIndex<[T]>,
    {
        if cfg!(debug_assertions) {
            &mut self[index]
        } else {
            self.get_unchecked_mut(index)
        }
    }
}

pub trait Slice2Uninit<T> {
    fn as_uninit(&self) -> &[MaybeUninit<T>];
}

impl<T> Slice2Uninit<T> for [T] {
    #[inline]
    fn as_uninit(&self) -> &[MaybeUninit<T>] {
        unsafe { std::slice::from_raw_parts(self.as_ptr() as *const MaybeUninit<T>, self.len()) }
    }
}

// Loads a u64 from the given byteslice, as if it were padded with zeros.
#[inline]
pub fn load_padded_le_u64(bytes: &[u8]) -> u64 {
    let len = bytes.len();
    if len >= 8 {
        return u64::from_le_bytes(bytes[0..8].try_into().unwrap());
    }

    if len >= 4 {
        let lo = u32::from_le_bytes(bytes[0..4].try_into().unwrap());
        let hi = u32::from_le_bytes(bytes[len - 4..len].try_into().unwrap());
        return (lo as u64) | ((hi as u64) << (8 * (len - 4)));
    }

    if len == 0 {
        return 0;
    }

    let lo = bytes[0] as u64;
    let mid = (bytes[len / 2] as u64) << (8 * (len / 2));
    let hi = (bytes[len - 1] as u64) << (8 * (len - 1));
    lo | mid | hi
}