1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
use polars_core::utils::{concat_df_unchecked, CustomIterTools, NoNull};
use smartstring::alias::String as SmartString;

use super::*;

fn slice_take(
    total_rows: IdxSize,
    n_rows_right: IdxSize,
    slice: Option<(i64, usize)>,
    inner: fn(IdxSize, IdxSize, IdxSize) -> IdxCa,
) -> IdxCa {
    match slice {
        None => inner(0, total_rows, n_rows_right),
        Some((offset, len)) => {
            let (offset, len) = slice_offsets(offset, len, total_rows as usize);
            inner(offset as IdxSize, (len + offset) as IdxSize, n_rows_right)
        },
    }
}

fn take_left(total_rows: IdxSize, n_rows_right: IdxSize, slice: Option<(i64, usize)>) -> IdxCa {
    fn inner(offset: IdxSize, total_rows: IdxSize, n_rows_right: IdxSize) -> IdxCa {
        let mut take: NoNull<IdxCa> = (offset..total_rows)
            .map(|i| i / n_rows_right)
            .collect_trusted();
        take.set_sorted_flag(IsSorted::Ascending);
        take.into_inner()
    }
    slice_take(total_rows, n_rows_right, slice, inner)
}

fn take_right(total_rows: IdxSize, n_rows_right: IdxSize, slice: Option<(i64, usize)>) -> IdxCa {
    fn inner(offset: IdxSize, total_rows: IdxSize, n_rows_right: IdxSize) -> IdxCa {
        let take: NoNull<IdxCa> = (offset..total_rows)
            .map(|i| i % n_rows_right)
            .collect_trusted();
        take.into_inner()
    }
    slice_take(total_rows, n_rows_right, slice, inner)
}

pub trait CrossJoin: IntoDf {
    fn cross_join_dfs(
        &self,
        other: &DataFrame,
        slice: Option<(i64, usize)>,
        parallel: bool,
    ) -> PolarsResult<(DataFrame, DataFrame)> {
        let df_self = self.to_df();
        let n_rows_left = df_self.height() as IdxSize;
        let n_rows_right = other.height() as IdxSize;
        let Some(total_rows) = n_rows_left.checked_mul(n_rows_right) else {
            polars_bail!(
                ComputeError: "cross joins would produce more rows than fits into 2^32; \
                consider compiling with polars-big-idx feature, or set 'streaming'"
            );
        };
        if n_rows_left == 0 || n_rows_right == 0 {
            return Ok((df_self.clear(), other.clear()));
        }

        // the left side has the Nth row combined with every row from right.
        // So let's say we have the following no. of rows
        // left: 3
        // right: 4
        //
        // left take idx:   000011112222
        // right take idx:  012301230123

        let create_left_df = || {
            // SAFETY:
            // take left is in bounds
            unsafe { df_self.take_unchecked(&take_left(total_rows, n_rows_right, slice)) }
        };

        let create_right_df = || {
            // concatenation of dataframes is very expensive if we need to make the series mutable
            // many times, these are atomic operations
            // so we choose a different strategy at > 100 rows (arbitrarily small number)
            if n_rows_left > 100 || slice.is_some() {
                // SAFETY:
                // take right is in bounds
                unsafe { other.take_unchecked(&take_right(total_rows, n_rows_right, slice)) }
            } else {
                let iter = (0..n_rows_left).map(|_| other);
                concat_df_unchecked(iter)
            }
        };
        let (l_df, r_df) = if parallel {
            POOL.install(|| rayon::join(create_left_df, create_right_df))
        } else {
            (create_left_df(), create_right_df())
        };
        Ok((l_df, r_df))
    }

    #[doc(hidden)]
    /// used by streaming
    fn _cross_join_with_names(
        &self,
        other: &DataFrame,
        names: &[SmartString],
    ) -> PolarsResult<DataFrame> {
        let (mut l_df, r_df) = self.cross_join_dfs(other, None, false)?;

        unsafe {
            l_df.get_columns_mut().extend_from_slice(r_df.get_columns());

            l_df.get_columns_mut()
                .iter_mut()
                .zip(names)
                .for_each(|(s, name)| {
                    if s.name() != name {
                        s.rename(name);
                    }
                });
        }
        Ok(l_df)
    }

    /// Creates the Cartesian product from both frames, preserves the order of the left keys.
    fn cross_join(
        &self,
        other: &DataFrame,
        suffix: Option<&str>,
        slice: Option<(i64, usize)>,
    ) -> PolarsResult<DataFrame> {
        let (l_df, r_df) = self.cross_join_dfs(other, slice, true)?;

        _finish_join(l_df, r_df, suffix)
    }
}

impl CrossJoin for DataFrame {}