1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
use std::io::{Read, Seek};
use std::sync::Arc;

use arrow::datatypes::ArrowSchemaRef;
use polars_core::prelude::*;
#[cfg(feature = "cloud")]
use polars_core::utils::accumulate_dataframes_vertical_unchecked;
use polars_parquet::read;

#[cfg(feature = "cloud")]
use super::async_impl::FetchRowGroupsFromObjectStore;
#[cfg(feature = "cloud")]
use super::async_impl::ParquetObjectStore;
pub use super::read_impl::BatchedParquetReader;
use super::read_impl::{read_parquet, FetchRowGroupsFromMmapReader};
#[cfg(feature = "cloud")]
use super::utils::materialize_empty_df;
#[cfg(feature = "cloud")]
use crate::cloud::CloudOptions;
use crate::mmap::MmapBytesReader;
use crate::parquet::metadata::FileMetaDataRef;
use crate::predicates::PhysicalIoExpr;
use crate::prelude::*;
use crate::RowIndex;

/// Read Apache parquet format into a DataFrame.
#[must_use]
pub struct ParquetReader<R: Read + Seek> {
    reader: R,
    rechunk: bool,
    n_rows: Option<usize>,
    columns: Option<Vec<String>>,
    projection: Option<Vec<usize>>,
    parallel: ParallelStrategy,
    schema: Option<ArrowSchemaRef>,
    row_index: Option<RowIndex>,
    low_memory: bool,
    metadata: Option<FileMetaDataRef>,
    predicate: Option<Arc<dyn PhysicalIoExpr>>,
    hive_partition_columns: Option<Vec<Series>>,
    use_statistics: bool,
}

impl<R: MmapBytesReader> ParquetReader<R> {
    /// Try to reduce memory pressure at the expense of performance. If setting this does not reduce memory
    /// enough, turn off parallelization.
    pub fn set_low_memory(mut self, low_memory: bool) -> Self {
        self.low_memory = low_memory;
        self
    }

    /// Read the parquet file in parallel (default). The single threaded reader consumes less memory.
    pub fn read_parallel(mut self, parallel: ParallelStrategy) -> Self {
        self.parallel = parallel;
        self
    }

    /// Stop reading at `num_rows` rows.
    pub fn with_n_rows(mut self, num_rows: Option<usize>) -> Self {
        self.n_rows = num_rows;
        self
    }

    /// Columns to select/ project
    pub fn with_columns(mut self, columns: Option<Vec<String>>) -> Self {
        self.columns = columns;
        self
    }

    /// Set the reader's column projection. This counts from 0, meaning that
    /// `vec![0, 4]` would select the 1st and 5th column.
    pub fn with_projection(mut self, projection: Option<Vec<usize>>) -> Self {
        self.projection = projection;
        self
    }

    /// Add a row index column.
    pub fn with_row_index(mut self, row_index: Option<RowIndex>) -> Self {
        self.row_index = row_index;
        self
    }

    /// Set the [`Schema`] if already known. This must be exactly the same as
    /// the schema in the file itself.
    pub fn with_schema(mut self, schema: Option<ArrowSchemaRef>) -> Self {
        self.schema = schema;
        self
    }

    /// [`Schema`] of the file.
    pub fn schema(&mut self) -> PolarsResult<ArrowSchemaRef> {
        match &self.schema {
            Some(schema) => Ok(schema.clone()),
            None => {
                let metadata = self.get_metadata()?;
                Ok(Arc::new(read::infer_schema(metadata)?))
            },
        }
    }

    /// Use statistics in the parquet to determine if pages
    /// can be skipped from reading.
    pub fn use_statistics(mut self, toggle: bool) -> Self {
        self.use_statistics = toggle;
        self
    }

    /// Number of rows in the parquet file.
    pub fn num_rows(&mut self) -> PolarsResult<usize> {
        let metadata = self.get_metadata()?;
        Ok(metadata.num_rows)
    }

    pub fn with_hive_partition_columns(mut self, columns: Option<Vec<Series>>) -> Self {
        self.hive_partition_columns = columns;
        self
    }

    pub fn get_metadata(&mut self) -> PolarsResult<&FileMetaDataRef> {
        if self.metadata.is_none() {
            self.metadata = Some(Arc::new(read::read_metadata(&mut self.reader)?));
        }
        Ok(self.metadata.as_ref().unwrap())
    }

    pub fn with_predicate(mut self, predicate: Option<Arc<dyn PhysicalIoExpr>>) -> Self {
        self.predicate = predicate;
        self
    }
}

impl<R: MmapBytesReader + 'static> ParquetReader<R> {
    pub fn batched(mut self, chunk_size: usize) -> PolarsResult<BatchedParquetReader> {
        let metadata = self.get_metadata()?.clone();
        let schema = self.schema()?;

        let row_group_fetcher = FetchRowGroupsFromMmapReader::new(Box::new(self.reader))?.into();
        BatchedParquetReader::new(
            row_group_fetcher,
            metadata,
            schema,
            self.n_rows.unwrap_or(usize::MAX),
            self.projection,
            self.predicate.clone(),
            self.row_index,
            chunk_size,
            self.use_statistics,
            self.hive_partition_columns,
            self.parallel,
        )
    }
}

impl<R: MmapBytesReader> SerReader<R> for ParquetReader<R> {
    /// Create a new [`ParquetReader`] from an existing `Reader`.
    fn new(reader: R) -> Self {
        ParquetReader {
            reader,
            rechunk: false,
            n_rows: None,
            columns: None,
            projection: None,
            parallel: Default::default(),
            row_index: None,
            low_memory: false,
            metadata: None,
            predicate: None,
            schema: None,
            use_statistics: true,
            hive_partition_columns: None,
        }
    }

    fn set_rechunk(mut self, rechunk: bool) -> Self {
        self.rechunk = rechunk;
        self
    }

    fn finish(mut self) -> PolarsResult<DataFrame> {
        let schema = self.schema()?;
        let metadata = self.get_metadata()?.clone();

        if let Some(cols) = &self.columns {
            self.projection = Some(columns_to_projection(cols, schema.as_ref())?);
        }

        read_parquet(
            self.reader,
            self.n_rows.unwrap_or(usize::MAX),
            self.projection.as_deref(),
            &schema,
            Some(metadata),
            self.predicate.as_deref(),
            self.parallel,
            self.row_index,
            self.use_statistics,
            self.hive_partition_columns.as_deref(),
        )
        .map(|mut df| {
            if self.rechunk {
                df.as_single_chunk_par();
            }
            df
        })
    }
}

/// A Parquet reader on top of the async object_store API. Only the batch reader is implemented since
/// parquet files on cloud storage tend to be big and slow to access.
#[cfg(feature = "cloud")]
pub struct ParquetAsyncReader {
    reader: ParquetObjectStore,
    n_rows: Option<usize>,
    rechunk: bool,
    projection: Option<Vec<usize>>,
    predicate: Option<Arc<dyn PhysicalIoExpr>>,
    row_index: Option<RowIndex>,
    use_statistics: bool,
    hive_partition_columns: Option<Vec<Series>>,
    schema: Option<ArrowSchemaRef>,
    parallel: ParallelStrategy,
}

#[cfg(feature = "cloud")]
impl ParquetAsyncReader {
    pub async fn from_uri(
        uri: &str,
        cloud_options: Option<&CloudOptions>,
        schema: Option<ArrowSchemaRef>,
        metadata: Option<FileMetaDataRef>,
    ) -> PolarsResult<ParquetAsyncReader> {
        Ok(ParquetAsyncReader {
            reader: ParquetObjectStore::from_uri(uri, cloud_options, metadata).await?,
            rechunk: false,
            n_rows: None,
            projection: None,
            row_index: None,
            predicate: None,
            use_statistics: true,
            hive_partition_columns: None,
            schema,
            parallel: Default::default(),
        })
    }

    pub async fn schema(&mut self) -> PolarsResult<ArrowSchemaRef> {
        Ok(match self.schema.as_ref() {
            Some(schema) => Arc::clone(schema),
            None => {
                let metadata = self.reader.get_metadata().await?;
                let arrow_schema = polars_parquet::arrow::read::infer_schema(metadata)?;
                Arc::new(arrow_schema)
            },
        })
    }

    pub async fn num_rows(&mut self) -> PolarsResult<usize> {
        self.reader.num_rows().await
    }

    pub fn with_n_rows(mut self, n_rows: Option<usize>) -> Self {
        self.n_rows = n_rows;
        self
    }

    pub fn with_row_index(mut self, row_index: Option<RowIndex>) -> Self {
        self.row_index = row_index;
        self
    }

    pub fn set_rechunk(mut self, rechunk: bool) -> Self {
        self.rechunk = rechunk;
        self
    }

    pub fn with_projection(mut self, projection: Option<Vec<usize>>) -> Self {
        self.projection = projection;
        self
    }

    pub fn with_predicate(mut self, predicate: Option<Arc<dyn PhysicalIoExpr>>) -> Self {
        self.predicate = predicate;
        self
    }

    /// Use statistics in the parquet to determine if pages
    /// can be skipped from reading.
    pub fn use_statistics(mut self, toggle: bool) -> Self {
        self.use_statistics = toggle;
        self
    }

    pub fn with_hive_partition_columns(mut self, columns: Option<Vec<Series>>) -> Self {
        self.hive_partition_columns = columns;
        self
    }

    pub fn read_parallel(mut self, parallel: ParallelStrategy) -> Self {
        self.parallel = parallel;
        self
    }

    pub async fn batched(mut self, chunk_size: usize) -> PolarsResult<BatchedParquetReader> {
        let metadata = self.reader.get_metadata().await?.clone();
        let schema = match self.schema {
            Some(schema) => schema,
            None => self.schema().await?,
        };
        // row group fetched deals with projection
        let row_group_fetcher = FetchRowGroupsFromObjectStore::new(
            self.reader,
            schema.clone(),
            self.projection.as_deref(),
            self.predicate.clone(),
            &metadata.row_groups,
            self.n_rows.unwrap_or(usize::MAX),
        )?
        .into();
        BatchedParquetReader::new(
            row_group_fetcher,
            metadata,
            schema,
            self.n_rows.unwrap_or(usize::MAX),
            self.projection,
            self.predicate.clone(),
            self.row_index,
            chunk_size,
            self.use_statistics,
            self.hive_partition_columns,
            self.parallel,
        )
    }

    pub async fn get_metadata(&mut self) -> PolarsResult<&FileMetaDataRef> {
        self.reader.get_metadata().await
    }

    pub async fn finish(mut self) -> PolarsResult<DataFrame> {
        let rechunk = self.rechunk;
        let metadata = self.get_metadata().await?.clone();
        let reader_schema = self.schema().await?;
        let row_index = self.row_index.clone();
        let hive_partition_columns = self.hive_partition_columns.clone();
        let projection = self.projection.clone();

        // batched reader deals with slice pushdown
        let reader = self.batched(usize::MAX).await?;
        let n_batches = metadata.row_groups.len();
        let mut iter = reader.iter(n_batches);

        let mut chunks = Vec::with_capacity(n_batches);
        while let Some(result) = iter.next_().await {
            chunks.push(result?)
        }
        if chunks.is_empty() {
            return Ok(materialize_empty_df(
                projection.as_deref(),
                reader_schema.as_ref(),
                hive_partition_columns.as_deref(),
                row_index.as_ref(),
            ));
        }
        let mut df = accumulate_dataframes_vertical_unchecked(chunks);

        if rechunk {
            df.as_single_chunk_par();
        }
        Ok(df)
    }
}