1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
use std::fs::File;
use std::path::PathBuf;

use polars_core::prelude::*;
#[cfg(feature = "temporal")]
use polars_time::prelude::*;
#[cfg(feature = "temporal")]
use rayon::prelude::*;

use super::options::CsvReadOptions;
use super::read_impl::batched::to_batched_owned;
use super::read_impl::CoreReader;
use super::{infer_file_schema, BatchedCsvReader, OwnedBatchedCsvReader};
use crate::mmap::MmapBytesReader;
use crate::predicates::PhysicalIoExpr;
use crate::shared::SerReader;
use crate::utils::{get_reader_bytes, resolve_homedir};

/// Create a new DataFrame by reading a csv file.
///
/// # Example
///
/// ```
/// use polars_core::prelude::*;
/// use polars_io::prelude::*;
/// use std::fs::File;
///
/// fn example() -> PolarsResult<DataFrame> {
///     CsvReadOptions::default()
///             .with_has_header(true)
///             .try_into_reader_with_file_path(Some("iris.csv".into()))?
///             .finish()
/// }
/// ```
#[must_use]
pub struct CsvReader<R>
where
    R: MmapBytesReader,
{
    /// File or Stream object.
    reader: R,
    /// Options for the CSV reader.
    options: CsvReadOptions,
    predicate: Option<Arc<dyn PhysicalIoExpr>>,
}

impl<R> CsvReader<R>
where
    R: MmapBytesReader,
{
    pub fn _with_predicate(mut self, predicate: Option<Arc<dyn PhysicalIoExpr>>) -> Self {
        self.predicate = predicate;
        self
    }

    // TODO: Investigate if we can remove this
    pub(crate) fn with_schema(mut self, schema: SchemaRef) -> Self {
        self.options.schema = Some(schema);
        self
    }

    // TODO: Investigate if we can remove this
    pub(crate) fn get_schema(&self) -> Option<SchemaRef> {
        self.options.schema.clone()
    }
}

impl CsvReadOptions {
    /// Creates a CSV reader using a file path.
    ///
    /// # Panics
    /// If both self.path and the path parameter are non-null. Only one of them is
    /// to be non-null.
    pub fn try_into_reader_with_file_path(
        mut self,
        path: Option<PathBuf>,
    ) -> PolarsResult<CsvReader<File>> {
        if self.path.is_some() {
            assert!(
                path.is_none(),
                "impl error: only 1 of self.path or the path parameter is to be non-null"
            );
        } else {
            self.path = path;
        };

        assert!(
            self.path.is_some(),
            "impl error: either one of self.path or the path parameter is to be non-null"
        );

        let path = resolve_homedir(self.path.as_ref().unwrap());
        let reader = polars_utils::open_file(path)?;
        let options = self;

        Ok(CsvReader {
            reader,
            options,
            predicate: None,
        })
    }

    /// Creates a CSV reader using a file handle.
    pub fn into_reader_with_file_handle<R: MmapBytesReader>(self, reader: R) -> CsvReader<R> {
        let options = self;

        CsvReader {
            reader,
            options,
            predicate: Default::default(),
        }
    }
}

impl<R: MmapBytesReader> CsvReader<R> {
    fn core_reader(
        &mut self,
        schema: Option<SchemaRef>,
        to_cast: Vec<Field>,
    ) -> PolarsResult<CoreReader> {
        let reader_bytes = get_reader_bytes(&mut self.reader)?;

        let parse_options = self.options.get_parse_options();

        CoreReader::new(
            reader_bytes,
            self.options.n_rows,
            self.options.skip_rows,
            self.options.projection.clone().map(|x| x.as_ref().clone()),
            self.options.infer_schema_length,
            Some(parse_options.separator),
            self.options.has_header,
            self.options.ignore_errors,
            self.options.schema.clone(),
            self.options.columns.clone(),
            parse_options.encoding,
            self.options.n_threads,
            schema,
            self.options.dtype_overwrite.clone(),
            self.options.sample_size,
            self.options.chunk_size,
            self.options.low_memory,
            parse_options.comment_prefix.clone(),
            parse_options.quote_char,
            parse_options.eol_char,
            parse_options.null_values.clone(),
            parse_options.missing_is_null,
            self.predicate.clone(),
            to_cast,
            self.options.skip_rows_after_header,
            self.options.row_index.clone(),
            parse_options.try_parse_dates,
            self.options.raise_if_empty,
            parse_options.truncate_ragged_lines,
            parse_options.decimal_comma,
        )
    }

    // TODO:
    // * Move this step outside of the reader so that we don't do it multiple times
    //   when we read a file list.
    // * See if we can avoid constructing a filtered schema.
    fn prepare_schema_overwrite(
        &self,
        overwriting_schema: &Schema,
    ) -> PolarsResult<(Schema, Vec<Field>, bool)> {
        // This branch we check if there are dtypes we cannot parse.
        // We only support a few dtypes in the parser and later cast to the required dtype
        let mut to_cast = Vec::with_capacity(overwriting_schema.len());

        let mut _has_categorical = false;
        let mut _err: Option<PolarsError> = None;

        #[allow(unused_mut)]
        let schema = overwriting_schema
            .iter_fields()
            .filter_map(|mut fld| {
                use DataType::*;
                match fld.data_type() {
                    Time => {
                        to_cast.push(fld);
                        // let inference decide the column type
                        None
                    },
                    #[cfg(feature = "dtype-categorical")]
                    Categorical(_, _) => {
                        _has_categorical = true;
                        Some(fld)
                    },
                    #[cfg(feature = "dtype-decimal")]
                    Decimal(precision, scale) => match (precision, scale) {
                        (_, Some(_)) => {
                            to_cast.push(fld.clone());
                            fld.coerce(String);
                            Some(fld)
                        },
                        _ => {
                            _err = Some(PolarsError::ComputeError(
                                "'scale' must be set when reading csv column as Decimal".into(),
                            ));
                            None
                        },
                    },
                    _ => Some(fld),
                }
            })
            .collect::<Schema>();

        if let Some(err) = _err {
            Err(err)
        } else {
            Ok((schema, to_cast, _has_categorical))
        }
    }

    pub fn batched_borrowed(&mut self) -> PolarsResult<BatchedCsvReader> {
        if let Some(schema) = self.options.schema_overwrite.as_deref() {
            let (schema, to_cast, has_cat) = self.prepare_schema_overwrite(schema)?;
            let schema = Arc::new(schema);

            let csv_reader = self.core_reader(Some(schema), to_cast)?;
            csv_reader.batched(has_cat)
        } else {
            let csv_reader = self.core_reader(self.options.schema.clone(), vec![])?;
            csv_reader.batched(false)
        }
    }
}

impl CsvReader<Box<dyn MmapBytesReader>> {
    pub fn batched(mut self, schema: Option<SchemaRef>) -> PolarsResult<OwnedBatchedCsvReader> {
        match schema {
            Some(schema) => Ok(to_batched_owned(self.with_schema(schema))),
            None => {
                let parse_options = self.options.get_parse_options();
                let reader_bytes = get_reader_bytes(&mut self.reader)?;

                let (inferred_schema, _, _) = infer_file_schema(
                    &reader_bytes,
                    parse_options.separator,
                    self.options.infer_schema_length,
                    self.options.has_header,
                    None,
                    self.options.skip_rows,
                    self.options.skip_rows_after_header,
                    parse_options.comment_prefix.as_ref(),
                    parse_options.quote_char,
                    parse_options.eol_char,
                    parse_options.null_values.as_ref(),
                    parse_options.try_parse_dates,
                    self.options.raise_if_empty,
                    &mut self.options.n_threads,
                    parse_options.decimal_comma,
                )?;
                let schema = Arc::new(inferred_schema);
                Ok(to_batched_owned(self.with_schema(schema)))
            },
        }
    }
}

impl<R> SerReader<R> for CsvReader<R>
where
    R: MmapBytesReader,
{
    /// Create a new CsvReader from a file/stream using default read options. To
    /// use non-default read options, first construct [CsvReadOptions] and then use
    /// any of the `(try)_into_` methods.
    fn new(reader: R) -> Self {
        CsvReader {
            reader,
            options: Default::default(),
            predicate: None,
        }
    }

    /// Read the file and create the DataFrame.
    fn finish(mut self) -> PolarsResult<DataFrame> {
        let rechunk = self.options.rechunk;
        let schema_overwrite = self.options.schema_overwrite.clone();
        let low_memory = self.options.low_memory;

        #[cfg(feature = "dtype-categorical")]
        let mut _cat_lock = None;

        let mut df = if let Some(schema) = schema_overwrite.as_deref() {
            let (schema, to_cast, _has_cat) = self.prepare_schema_overwrite(schema)?;

            #[cfg(feature = "dtype-categorical")]
            if _has_cat {
                _cat_lock = Some(polars_core::StringCacheHolder::hold())
            }

            let mut csv_reader = self.core_reader(Some(Arc::new(schema)), to_cast)?;
            csv_reader.as_df()?
        } else {
            #[cfg(feature = "dtype-categorical")]
            {
                let has_cat = self
                    .options
                    .schema
                    .clone()
                    .map(|schema| {
                        schema
                            .iter_dtypes()
                            .any(|dtype| matches!(dtype, DataType::Categorical(_, _)))
                    })
                    .unwrap_or(false);
                if has_cat {
                    _cat_lock = Some(polars_core::StringCacheHolder::hold())
                }
            }
            let mut csv_reader = self.core_reader(self.options.schema.clone(), vec![])?;
            csv_reader.as_df()?
        };

        // Important that this rechunk is never done in parallel.
        // As that leads to great memory overhead.
        if rechunk && df.n_chunks() > 1 {
            if low_memory {
                df.as_single_chunk();
            } else {
                df.as_single_chunk_par();
            }
        }

        #[cfg(feature = "temporal")]
        {
            let parse_options = self.options.get_parse_options();

            // only needed until we also can parse time columns in place
            if parse_options.try_parse_dates {
                // determine the schema that's given by the user. That should not be changed
                let fixed_schema = match (schema_overwrite, self.options.dtype_overwrite) {
                    (Some(schema), _) => schema,
                    (None, Some(dtypes)) => {
                        let schema = dtypes
                            .iter()
                            .zip(df.get_column_names())
                            .map(|(dtype, name)| Field::new(name, dtype.clone()))
                            .collect::<Schema>();

                        Arc::new(schema)
                    },
                    _ => Arc::default(),
                };
                df = parse_dates(df, &fixed_schema)
            }
        }

        Ok(df)
    }
}

#[cfg(feature = "temporal")]
fn parse_dates(mut df: DataFrame, fixed_schema: &Schema) -> DataFrame {
    use polars_core::POOL;

    let cols = unsafe { std::mem::take(df.get_columns_mut()) }
        .into_par_iter()
        .map(|s| {
            match s.dtype() {
                DataType::String => {
                    let ca = s.str().unwrap();
                    // don't change columns that are in the fixed schema.
                    if fixed_schema.index_of(s.name()).is_some() {
                        return s;
                    }

                    #[cfg(feature = "dtype-time")]
                    if let Ok(ca) = ca.as_time(None, false) {
                        return ca.into_series();
                    }
                    s
                },
                _ => s,
            }
        });
    let cols = POOL.install(|| cols.collect::<Vec<_>>());

    unsafe { DataFrame::new_no_checks(cols) }
}