1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
use arrow::bitmap::utils::get_bit_unchecked;
use polars_utils::total_ord::{ToTotalOrd, TotalHash};
use rayon::prelude::*;
use xxhash_rust::xxh3::xxh3_64_with_seed;

use super::*;
use crate::prelude::*;
use crate::series::implementations::null::NullChunked;
use crate::POOL;

// See: https://github.com/tkaitchuck/aHash/blob/f9acd508bd89e7c5b2877a9510098100f9018d64/src/operations.rs#L4
const MULTIPLE: u64 = 6364136223846793005;

// Read more:
//  https://www.cockroachlabs.com/blog/vectorized-hash-joiner/
//  http://myeyesareblind.com/2017/02/06/Combine-hash-values/

pub trait VecHash {
    /// Compute the hash for all values in the array.
    ///
    /// This currently only works with the AHash RandomState hasher builder.
    fn vec_hash(&self, _random_state: RandomState, _buf: &mut Vec<u64>) -> PolarsResult<()> {
        polars_bail!(un_impl = vec_hash);
    }

    fn vec_hash_combine(
        &self,
        _random_state: RandomState,
        _hashes: &mut [u64],
    ) -> PolarsResult<()> {
        polars_bail!(un_impl = vec_hash_combine);
    }
}

pub(crate) const fn folded_multiply(s: u64, by: u64) -> u64 {
    let result = (s as u128).wrapping_mul(by as u128);
    ((result & 0xffff_ffff_ffff_ffff) as u64) ^ ((result >> 64) as u64)
}

pub(crate) fn get_null_hash_value(random_state: &RandomState) -> u64 {
    // we just start with a large prime number and hash that twice
    // to get a constant hash value for null/None
    let first = random_state.hash_one(3188347919usize);
    random_state.hash_one(first)
}

fn insert_null_hash(chunks: &[ArrayRef], random_state: RandomState, buf: &mut Vec<u64>) {
    let null_h = get_null_hash_value(&random_state);
    let hashes = buf.as_mut_slice();

    let mut offset = 0;
    chunks.iter().for_each(|arr| {
        if arr.null_count() > 0 {
            let validity = arr.validity().unwrap();
            let (slice, byte_offset, _) = validity.as_slice();
            (0..validity.len())
                .map(|i| unsafe { get_bit_unchecked(slice, i + byte_offset) })
                .zip(&mut hashes[offset..])
                .for_each(|(valid, h)| {
                    *h = [null_h, *h][valid as usize];
                })
        }
        offset += arr.len();
    });
}

fn numeric_vec_hash<T>(ca: &ChunkedArray<T>, random_state: RandomState, buf: &mut Vec<u64>)
where
    T: PolarsNumericType,
    T::Native: TotalHash + ToTotalOrd,
    <T::Native as ToTotalOrd>::TotalOrdItem: Hash,
{
    // Note that we don't use the no null branch! This can break in unexpected ways.
    // for instance with threading we split an array in n_threads, this may lead to
    // splits that have no nulls and splits that have nulls. Then one array is hashed with
    // Option<T> and the other array with T.
    // Meaning that they cannot be compared. By always hashing on Option<T> the random_state is
    // the only deterministic seed.
    buf.clear();
    buf.reserve(ca.len());

    #[allow(unused_unsafe)]
    #[allow(clippy::useless_transmute)]
    ca.downcast_iter().for_each(|arr| {
        buf.extend(
            arr.values()
                .as_slice()
                .iter()
                .copied()
                .map(|v| random_state.hash_one(v.to_total_ord())),
        );
    });
    insert_null_hash(&ca.chunks, random_state, buf)
}

fn numeric_vec_hash_combine<T>(ca: &ChunkedArray<T>, random_state: RandomState, hashes: &mut [u64])
where
    T: PolarsNumericType,
    T::Native: TotalHash + ToTotalOrd,
    <T::Native as ToTotalOrd>::TotalOrdItem: Hash,
{
    let null_h = get_null_hash_value(&random_state);

    let mut offset = 0;
    ca.downcast_iter().for_each(|arr| {
        match arr.null_count() {
            0 => arr
                .values()
                .as_slice()
                .iter()
                .zip(&mut hashes[offset..])
                .for_each(|(v, h)| {
                    // Inlined from ahash. This ensures we combine with the previous state.
                    *h = folded_multiply(
                        // Be careful not to xor the hash directly with the existing hash,
                        // it would lead to 0-hashes for 2 columns containing equal values.
                        random_state.hash_one(v.to_total_ord()) ^ folded_multiply(*h, MULTIPLE),
                        MULTIPLE,
                    );
                }),
            _ => {
                let validity = arr.validity().unwrap();
                let (slice, byte_offset, _) = validity.as_slice();
                (0..validity.len())
                    .map(|i| unsafe { get_bit_unchecked(slice, i + byte_offset) })
                    .zip(&mut hashes[offset..])
                    .zip(arr.values().as_slice())
                    .for_each(|((valid, h), l)| {
                        let lh = random_state.hash_one(l.to_total_ord());
                        let to_hash = [null_h, lh][valid as usize];
                        *h = folded_multiply(to_hash ^ folded_multiply(*h, MULTIPLE), MULTIPLE);
                    });
            },
        }
        offset += arr.len();
    });
}

macro_rules! vec_hash_numeric {
    ($ca:ident) => {
        impl VecHash for $ca {
            fn vec_hash(&self, random_state: RandomState, buf: &mut Vec<u64>) -> PolarsResult<()> {
                numeric_vec_hash(self, random_state, buf);
                Ok(())
            }

            fn vec_hash_combine(
                &self,
                random_state: RandomState,
                hashes: &mut [u64],
            ) -> PolarsResult<()> {
                numeric_vec_hash_combine(self, random_state, hashes);
                Ok(())
            }
        }
    };
}

vec_hash_numeric!(Int64Chunked);
vec_hash_numeric!(Int32Chunked);
vec_hash_numeric!(Int16Chunked);
vec_hash_numeric!(Int8Chunked);
vec_hash_numeric!(UInt64Chunked);
vec_hash_numeric!(UInt32Chunked);
vec_hash_numeric!(UInt16Chunked);
vec_hash_numeric!(UInt8Chunked);
vec_hash_numeric!(Float64Chunked);
vec_hash_numeric!(Float32Chunked);
#[cfg(feature = "dtype-decimal")]
vec_hash_numeric!(Int128Chunked);

impl VecHash for StringChunked {
    fn vec_hash(&self, random_state: RandomState, buf: &mut Vec<u64>) -> PolarsResult<()> {
        self.as_binary().vec_hash(random_state, buf)?;
        Ok(())
    }

    fn vec_hash_combine(&self, random_state: RandomState, hashes: &mut [u64]) -> PolarsResult<()> {
        self.as_binary().vec_hash_combine(random_state, hashes)?;
        Ok(())
    }
}

// used in polars-pipe
pub fn _hash_binary_array(arr: &BinaryArray<i64>, random_state: RandomState, buf: &mut Vec<u64>) {
    let null_h = get_null_hash_value(&random_state);
    if arr.null_count() == 0 {
        // use the null_hash as seed to get a hash determined by `random_state` that is passed
        buf.extend(arr.values_iter().map(|v| xxh3_64_with_seed(v, null_h)))
    } else {
        buf.extend(arr.into_iter().map(|opt_v| match opt_v {
            Some(v) => xxh3_64_with_seed(v, null_h),
            None => null_h,
        }))
    }
}

fn hash_binview_array(arr: &BinaryViewArray, random_state: RandomState, buf: &mut Vec<u64>) {
    let null_h = get_null_hash_value(&random_state);
    if arr.null_count() == 0 {
        // use the null_hash as seed to get a hash determined by `random_state` that is passed
        buf.extend(arr.values_iter().map(|v| xxh3_64_with_seed(v, null_h)))
    } else {
        buf.extend(arr.into_iter().map(|opt_v| match opt_v {
            Some(v) => xxh3_64_with_seed(v, null_h),
            None => null_h,
        }))
    }
}

impl VecHash for BinaryChunked {
    fn vec_hash(&self, random_state: RandomState, buf: &mut Vec<u64>) -> PolarsResult<()> {
        buf.clear();
        buf.reserve(self.len());
        self.downcast_iter()
            .for_each(|arr| hash_binview_array(arr, random_state.clone(), buf));
        Ok(())
    }

    fn vec_hash_combine(&self, random_state: RandomState, hashes: &mut [u64]) -> PolarsResult<()> {
        let null_h = get_null_hash_value(&random_state);

        let mut offset = 0;
        self.downcast_iter().for_each(|arr| {
            match arr.null_count() {
                0 => arr
                    .values_iter()
                    .zip(&mut hashes[offset..])
                    .for_each(|(v, h)| {
                        let l = xxh3_64_with_seed(v, null_h);
                        *h = _boost_hash_combine(l, *h)
                    }),
                _ => {
                    let validity = arr.validity().unwrap();
                    let (slice, byte_offset, _) = validity.as_slice();
                    (0..validity.len())
                        .map(|i| unsafe { get_bit_unchecked(slice, i + byte_offset) })
                        .zip(&mut hashes[offset..])
                        .zip(arr.values_iter())
                        .for_each(|((valid, h), l)| {
                            let l = if valid {
                                xxh3_64_with_seed(l, null_h)
                            } else {
                                null_h
                            };
                            *h = _boost_hash_combine(l, *h)
                        });
                },
            }
            offset += arr.len();
        });
        Ok(())
    }
}

impl VecHash for BinaryOffsetChunked {
    fn vec_hash(&self, random_state: RandomState, buf: &mut Vec<u64>) -> PolarsResult<()> {
        buf.clear();
        buf.reserve(self.len());
        self.downcast_iter()
            .for_each(|arr| _hash_binary_array(arr, random_state.clone(), buf));
        Ok(())
    }

    fn vec_hash_combine(&self, random_state: RandomState, hashes: &mut [u64]) -> PolarsResult<()> {
        let null_h = get_null_hash_value(&random_state);

        let mut offset = 0;
        self.downcast_iter().for_each(|arr| {
            match arr.null_count() {
                0 => arr
                    .values_iter()
                    .zip(&mut hashes[offset..])
                    .for_each(|(v, h)| {
                        let l = xxh3_64_with_seed(v, null_h);
                        *h = _boost_hash_combine(l, *h)
                    }),
                _ => {
                    let validity = arr.validity().unwrap();
                    let (slice, byte_offset, _) = validity.as_slice();
                    (0..validity.len())
                        .map(|i| unsafe { get_bit_unchecked(slice, i + byte_offset) })
                        .zip(&mut hashes[offset..])
                        .zip(arr.values_iter())
                        .for_each(|((valid, h), l)| {
                            let l = if valid {
                                xxh3_64_with_seed(l, null_h)
                            } else {
                                null_h
                            };
                            *h = _boost_hash_combine(l, *h)
                        });
                },
            }
            offset += arr.len();
        });
        Ok(())
    }
}

impl VecHash for NullChunked {
    fn vec_hash(&self, random_state: RandomState, buf: &mut Vec<u64>) -> PolarsResult<()> {
        let null_h = get_null_hash_value(&random_state);
        buf.clear();
        buf.resize(self.len(), null_h);
        Ok(())
    }

    fn vec_hash_combine(&self, random_state: RandomState, hashes: &mut [u64]) -> PolarsResult<()> {
        let null_h = get_null_hash_value(&random_state);
        hashes
            .iter_mut()
            .for_each(|h| *h = _boost_hash_combine(null_h, *h));
        Ok(())
    }
}
impl VecHash for BooleanChunked {
    fn vec_hash(&self, random_state: RandomState, buf: &mut Vec<u64>) -> PolarsResult<()> {
        buf.clear();
        buf.reserve(self.len());
        let true_h = random_state.hash_one(true);
        let false_h = random_state.hash_one(false);
        let null_h = get_null_hash_value(&random_state);
        self.downcast_iter().for_each(|arr| {
            if arr.null_count() == 0 {
                buf.extend(arr.values_iter().map(|v| if v { true_h } else { false_h }))
            } else {
                buf.extend(arr.into_iter().map(|opt_v| match opt_v {
                    Some(true) => true_h,
                    Some(false) => false_h,
                    None => null_h,
                }))
            }
        });
        Ok(())
    }

    fn vec_hash_combine(&self, random_state: RandomState, hashes: &mut [u64]) -> PolarsResult<()> {
        let true_h = random_state.hash_one(true);
        let false_h = random_state.hash_one(false);
        let null_h = get_null_hash_value(&random_state);

        let mut offset = 0;
        self.downcast_iter().for_each(|arr| {
            match arr.null_count() {
                0 => arr
                    .values_iter()
                    .zip(&mut hashes[offset..])
                    .for_each(|(v, h)| {
                        let l = if v { true_h } else { false_h };
                        *h = _boost_hash_combine(l, *h)
                    }),
                _ => {
                    let validity = arr.validity().unwrap();
                    let (slice, byte_offset, _) = validity.as_slice();
                    (0..validity.len())
                        .map(|i| unsafe { get_bit_unchecked(slice, i + byte_offset) })
                        .zip(&mut hashes[offset..])
                        .zip(arr.values())
                        .for_each(|((valid, h), l)| {
                            let l = if valid {
                                if l {
                                    true_h
                                } else {
                                    false_h
                                }
                            } else {
                                null_h
                            };
                            *h = _boost_hash_combine(l, *h)
                        });
                },
            }
            offset += arr.len();
        });
        Ok(())
    }
}

#[cfg(feature = "object")]
impl<T> VecHash for ObjectChunked<T>
where
    T: PolarsObject,
{
    fn vec_hash(&self, random_state: RandomState, buf: &mut Vec<u64>) -> PolarsResult<()> {
        // Note that we don't use the no null branch! This can break in unexpected ways.
        // for instance with threading we split an array in n_threads, this may lead to
        // splits that have no nulls and splits that have nulls. Then one array is hashed with
        // Option<T> and the other array with T.
        // Meaning that they cannot be compared. By always hashing on Option<T> the random_state is
        // the only deterministic seed.
        buf.clear();
        buf.reserve(self.len());

        self.downcast_iter()
            .for_each(|arr| buf.extend(arr.into_iter().map(|opt_v| random_state.hash_one(opt_v))));

        Ok(())
    }

    fn vec_hash_combine(&self, random_state: RandomState, hashes: &mut [u64]) -> PolarsResult<()> {
        self.apply_to_slice(
            |opt_v, h| {
                let hashed = random_state.hash_one(opt_v);
                _boost_hash_combine(hashed, *h)
            },
            hashes,
        );
        Ok(())
    }
}

pub fn _df_rows_to_hashes_threaded_vertical(
    keys: &[DataFrame],
    hasher_builder: Option<RandomState>,
) -> PolarsResult<(Vec<UInt64Chunked>, RandomState)> {
    let hasher_builder = hasher_builder.unwrap_or_default();

    let hashes = POOL.install(|| {
        keys.into_par_iter()
            .map(|df| {
                let hb = hasher_builder.clone();
                let mut hashes = vec![];
                series_to_hashes(df.get_columns(), Some(hb), &mut hashes)?;
                Ok(UInt64Chunked::from_vec("", hashes))
            })
            .collect::<PolarsResult<Vec<_>>>()
    })?;
    Ok((hashes, hasher_builder))
}

pub(crate) fn series_to_hashes(
    keys: &[Series],
    build_hasher: Option<RandomState>,
    hashes: &mut Vec<u64>,
) -> PolarsResult<RandomState> {
    let build_hasher = build_hasher.unwrap_or_default();

    let mut iter = keys.iter();
    let first = iter.next().expect("at least one key");
    first.vec_hash(build_hasher.clone(), hashes)?;

    for keys in iter {
        keys.vec_hash_combine(build_hasher.clone(), hashes)?;
    }

    Ok(build_hasher)
}