1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
mod identity;
pub(crate) mod vector_hasher;
use std::hash::{BuildHasher, BuildHasherDefault, Hash, Hasher};
use ahash::RandomState;
use hashbrown::hash_map::RawEntryMut;
use hashbrown::HashMap;
pub use identity::*;
pub use vector_hasher::*;
use crate::prelude::*;
// hash combine from c++' boost lib
#[inline]
pub fn _boost_hash_combine(l: u64, r: u64) -> u64 {
l ^ r.wrapping_add(0x9e3779b9u64.wrapping_add(l << 6).wrapping_add(r >> 2))
}
// We must strike a balance between cache
// Overallocation seems a lot more expensive than resizing so we start reasonable small.
pub const _HASHMAP_INIT_SIZE: usize = 512;
/// Utility function used as comparison function in the hashmap.
/// The rationale is that equality is an AND operation and therefore its probability of success
/// declines rapidly with the number of keys. Instead of first copying an entire row from both
/// sides and then do the comparison, we do the comparison value by value catching early failures
/// eagerly.
///
/// # Safety
/// Doesn't check any bounds
#[inline]
pub(crate) unsafe fn compare_df_rows(keys: &DataFrame, idx_a: usize, idx_b: usize) -> bool {
for s in keys.get_columns() {
if !s.equal_element(idx_a, idx_b, s) {
return false;
}
}
true
}
/// Populate a multiple key hashmap with row indexes.
/// Instead of the keys (which could be very large), the row indexes are stored.
/// To check if a row is equal the original DataFrame is also passed as ref.
/// When a hash collision occurs the indexes are ptrs to the rows and the rows are compared
/// on equality.
pub fn populate_multiple_key_hashmap<V, H, F, G>(
hash_tbl: &mut HashMap<IdxHash, V, H>,
// row index
idx: IdxSize,
// hash
original_h: u64,
// keys of the hash table (will not be inserted, the indexes will be used)
// the keys are needed for the equality check
keys: &DataFrame,
// value to insert
vacant_fn: G,
// function that gets a mutable ref to the occupied value in the hash table
mut occupied_fn: F,
) where
G: Fn() -> V,
F: FnMut(&mut V),
H: BuildHasher,
{
let entry = hash_tbl
.raw_entry_mut()
// uses the idx to probe rows in the original DataFrame with keys
// to check equality to find an entry
// this does not invalidate the hashmap as this equality function is not used
// during rehashing/resize (then the keys are already known to be unique).
// Only during insertion and probing an equality function is needed
.from_hash(original_h, |idx_hash| {
// first check the hash values
// before we incur a cache miss
idx_hash.hash == original_h && {
let key_idx = idx_hash.idx;
// SAFETY:
// indices in a group_by operation are always in bounds.
unsafe { compare_df_rows(keys, key_idx as usize, idx as usize) }
}
});
match entry {
RawEntryMut::Vacant(entry) => {
entry.insert_hashed_nocheck(original_h, IdxHash::new(idx, original_h), vacant_fn());
},
RawEntryMut::Occupied(mut entry) => {
let (_k, v) = entry.get_key_value_mut();
occupied_fn(v);
},
}
}