1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
use arrow::legacy::kernels::concatenate::concatenate_owned_unchecked;
use arrow::offset::OffsetsBuffer;
use rayon::prelude::*;
#[cfg(feature = "serde-lazy")]
use serde::{Deserialize, Serialize};
use smartstring::alias::String as SmartString;
use crate::chunked_array::ops::explode::offsets_to_indexes;
use crate::prelude::*;
use crate::series::IsSorted;
use crate::utils::try_get_supertype;
use crate::POOL;
fn get_exploded(series: &Series) -> PolarsResult<(Series, OffsetsBuffer<i64>)> {
match series.dtype() {
DataType::List(_) => series.list().unwrap().explode_and_offsets(),
#[cfg(feature = "dtype-array")]
DataType::Array(_, _) => series.array().unwrap().explode_and_offsets(),
_ => polars_bail!(opq = explode, series.dtype()),
}
}
/// Arguments for `[DataFrame::melt]` function
#[derive(Clone, Default, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde-lazy", derive(Serialize, Deserialize))]
pub struct MeltArgs {
pub id_vars: Vec<SmartString>,
pub value_vars: Vec<SmartString>,
pub variable_name: Option<SmartString>,
pub value_name: Option<SmartString>,
/// Whether the melt may be done
/// in the streaming engine
/// This will not have a stable ordering
pub streamable: bool,
}
impl DataFrame {
pub fn explode_impl(&self, mut columns: Vec<Series>) -> PolarsResult<DataFrame> {
polars_ensure!(!columns.is_empty(), InvalidOperation: "no columns provided in explode");
let mut df = self.clone();
if self.is_empty() {
for s in &columns {
df.with_column(s.explode()?)?;
}
return Ok(df);
}
columns.sort_by(|sa, sb| {
self.check_name_to_idx(sa.name())
.expect("checked above")
.partial_cmp(&self.check_name_to_idx(sb.name()).expect("checked above"))
.expect("cmp usize -> Ordering")
});
// first remove all the exploded columns
for s in &columns {
df = df.drop(s.name())?;
}
let exploded_columns = POOL.install(|| {
columns
.par_iter()
.map(get_exploded)
.collect::<PolarsResult<Vec<_>>>()
})?;
fn process_column(
original_df: &DataFrame,
df: &mut DataFrame,
exploded: Series,
) -> PolarsResult<()> {
if exploded.len() == df.height() || df.width() == 0 {
let col_idx = original_df.check_name_to_idx(exploded.name())?;
df.columns.insert(col_idx, exploded);
} else {
polars_bail!(
ShapeMismatch: "exploded column(s) {:?} doesn't have the same length: {} \
as the dataframe: {}", exploded.name(), exploded.name(), df.height(),
);
}
Ok(())
}
let check_offsets = || {
let first_offsets = exploded_columns[0].1.as_slice();
for (_, offsets) in &exploded_columns[1..] {
polars_ensure!(first_offsets == offsets.as_slice(),
ShapeMismatch: "exploded columns must have matching element counts"
)
}
Ok(())
};
let process_first = || {
let (exploded, offsets) = &exploded_columns[0];
let row_idx = offsets_to_indexes(offsets.as_slice(), exploded.len());
let mut row_idx = IdxCa::from_vec("", row_idx);
row_idx.set_sorted_flag(IsSorted::Ascending);
// SAFETY:
// We just created indices that are in bounds.
let mut df = unsafe { df.take_unchecked(&row_idx) };
process_column(self, &mut df, exploded.clone())?;
PolarsResult::Ok(df)
};
let (df, result) = POOL.join(process_first, check_offsets);
let mut df = df?;
result?;
for (exploded, _) in exploded_columns.into_iter().skip(1) {
process_column(self, &mut df, exploded)?
}
Ok(df)
}
/// Explode `DataFrame` to long format by exploding a column with Lists.
///
/// # Example
///
/// ```ignore
/// # use polars_core::prelude::*;
/// let s0 = Series::new("a", &[1i64, 2, 3]);
/// let s1 = Series::new("b", &[1i64, 1, 1]);
/// let s2 = Series::new("c", &[2i64, 2, 2]);
/// let list = Series::new("foo", &[s0, s1, s2]);
///
/// let s0 = Series::new("B", [1, 2, 3]);
/// let s1 = Series::new("C", [1, 1, 1]);
/// let df = DataFrame::new(vec![list, s0, s1])?;
/// let exploded = df.explode(["foo"])?;
///
/// println!("{:?}", df);
/// println!("{:?}", exploded);
/// # Ok::<(), PolarsError>(())
/// ```
/// Outputs:
///
/// ```text
/// +-------------+-----+-----+
/// | foo | B | C |
/// | --- | --- | --- |
/// | list [i64] | i32 | i32 |
/// +=============+=====+=====+
/// | "[1, 2, 3]" | 1 | 1 |
/// +-------------+-----+-----+
/// | "[1, 1, 1]" | 2 | 1 |
/// +-------------+-----+-----+
/// | "[2, 2, 2]" | 3 | 1 |
/// +-------------+-----+-----+
///
/// +-----+-----+-----+
/// | foo | B | C |
/// | --- | --- | --- |
/// | i64 | i32 | i32 |
/// +=====+=====+=====+
/// | 1 | 1 | 1 |
/// +-----+-----+-----+
/// | 2 | 1 | 1 |
/// +-----+-----+-----+
/// | 3 | 1 | 1 |
/// +-----+-----+-----+
/// | 1 | 2 | 1 |
/// +-----+-----+-----+
/// | 1 | 2 | 1 |
/// +-----+-----+-----+
/// | 1 | 2 | 1 |
/// +-----+-----+-----+
/// | 2 | 3 | 1 |
/// +-----+-----+-----+
/// | 2 | 3 | 1 |
/// +-----+-----+-----+
/// | 2 | 3 | 1 |
/// +-----+-----+-----+
/// ```
pub fn explode<I, S>(&self, columns: I) -> PolarsResult<DataFrame>
where
I: IntoIterator<Item = S>,
S: AsRef<str>,
{
// We need to sort the column by order of original occurrence. Otherwise the insert by index
// below will panic
let columns = self.select_series(columns)?;
self.explode_impl(columns)
}
///
/// Unpivot a `DataFrame` from wide to long format.
///
/// # Example
///
/// # Arguments
///
/// * `id_vars` - String slice that represent the columns to use as id variables.
/// * `value_vars` - String slice that represent the columns to use as value variables.
///
/// If `value_vars` is empty all columns that are not in `id_vars` will be used.
///
/// ```ignore
/// # use polars_core::prelude::*;
/// let df = df!("A" => &["a", "b", "a"],
/// "B" => &[1, 3, 5],
/// "C" => &[10, 11, 12],
/// "D" => &[2, 4, 6]
/// )?;
///
/// let melted = df.melt(&["A", "B"], &["C", "D"])?;
/// println!("{:?}", df);
/// println!("{:?}", melted);
/// # Ok::<(), PolarsError>(())
/// ```
/// Outputs:
/// ```text
/// +-----+-----+-----+-----+
/// | A | B | C | D |
/// | --- | --- | --- | --- |
/// | str | i32 | i32 | i32 |
/// +=====+=====+=====+=====+
/// | "a" | 1 | 10 | 2 |
/// +-----+-----+-----+-----+
/// | "b" | 3 | 11 | 4 |
/// +-----+-----+-----+-----+
/// | "a" | 5 | 12 | 6 |
/// +-----+-----+-----+-----+
///
/// +-----+-----+----------+-------+
/// | A | B | variable | value |
/// | --- | --- | --- | --- |
/// | str | i32 | str | i32 |
/// +=====+=====+==========+=======+
/// | "a" | 1 | "C" | 10 |
/// +-----+-----+----------+-------+
/// | "b" | 3 | "C" | 11 |
/// +-----+-----+----------+-------+
/// | "a" | 5 | "C" | 12 |
/// +-----+-----+----------+-------+
/// | "a" | 1 | "D" | 2 |
/// +-----+-----+----------+-------+
/// | "b" | 3 | "D" | 4 |
/// +-----+-----+----------+-------+
/// | "a" | 5 | "D" | 6 |
/// +-----+-----+----------+-------+
/// ```
pub fn melt<I, J>(&self, id_vars: I, value_vars: J) -> PolarsResult<Self>
where
I: IntoVec<SmartString>,
J: IntoVec<SmartString>,
{
let id_vars = id_vars.into_vec();
let value_vars = value_vars.into_vec();
self.melt2(MeltArgs {
id_vars,
value_vars,
..Default::default()
})
}
/// Similar to melt, but without generics. This may be easier if you want to pass
/// an empty `id_vars` or empty `value_vars`.
pub fn melt2(&self, args: MeltArgs) -> PolarsResult<Self> {
let id_vars = args.id_vars;
let mut value_vars = args.value_vars;
let variable_name = args.variable_name.as_deref().unwrap_or("variable");
let value_name = args.value_name.as_deref().unwrap_or("value");
let len = self.height();
// if value vars is empty we take all columns that are not in id_vars.
if value_vars.is_empty() {
// return empty frame if there are no columns available to use as value vars
if id_vars.len() == self.width() {
let variable_col = Series::new_empty(variable_name, &DataType::String);
let value_col = Series::new_empty(variable_name, &DataType::Null);
let mut out = self.select(id_vars).unwrap().clear().columns;
out.push(variable_col);
out.push(value_col);
return Ok(unsafe { DataFrame::new_no_checks(out) });
}
let id_vars_set = PlHashSet::from_iter(id_vars.iter().map(|s| s.as_str()));
value_vars = self
.get_columns()
.iter()
.filter_map(|s| {
if id_vars_set.contains(s.name()) {
None
} else {
Some(s.name().into())
}
})
.collect();
}
// values will all be placed in single column, so we must find their supertype
let schema = self.schema();
let mut iter = value_vars.iter().map(|v| {
schema
.get(v)
.ok_or_else(|| polars_err!(ColumnNotFound: "{}", v))
});
let mut st = iter.next().unwrap()?.clone();
for dt in iter {
st = try_get_supertype(&st, dt?)?;
}
// The column name of the variable that is melted
let mut variable_col =
MutableBinaryViewArray::<str>::with_capacity(len * value_vars.len() + 1);
// prepare ids
let ids_ = self.select_with_schema_unchecked(id_vars, &schema)?;
let mut ids = ids_.clone();
if ids.width() > 0 {
for _ in 0..value_vars.len() - 1 {
ids.vstack_mut_unchecked(&ids_)
}
}
ids.as_single_chunk_par();
drop(ids_);
let mut values = Vec::with_capacity(value_vars.len());
for value_column_name in &value_vars {
variable_col.extend_constant(len, Some(value_column_name.as_str()));
// ensure we go via the schema so we are O(1)
// self.column() is linear
// together with this loop that would make it O^2 over value_vars
let (pos, _name, _dtype) = schema.try_get_full(value_column_name)?;
let value_col = self.columns[pos].cast(&st).unwrap();
values.extend_from_slice(value_col.chunks())
}
let values_arr = concatenate_owned_unchecked(&values)?;
// SAFETY:
// The give dtype is correct
let values =
unsafe { Series::from_chunks_and_dtype_unchecked(value_name, vec![values_arr], &st) };
let variable_col = variable_col.as_box();
// SAFETY:
// The given dtype is correct
let variables = unsafe {
Series::from_chunks_and_dtype_unchecked(
variable_name,
vec![variable_col],
&DataType::String,
)
};
ids.hstack_mut(&[variables, values])?;
Ok(ids)
}
}
#[cfg(test)]
mod test {
use crate::prelude::*;
#[test]
#[cfg(feature = "dtype-i8")]
#[cfg_attr(miri, ignore)]
fn test_explode() {
let s0 = Series::new("a", &[1i8, 2, 3]);
let s1 = Series::new("b", &[1i8, 1, 1]);
let s2 = Series::new("c", &[2i8, 2, 2]);
let list = Series::new("foo", &[s0, s1, s2]);
let s0 = Series::new("B", [1, 2, 3]);
let s1 = Series::new("C", [1, 1, 1]);
let df = DataFrame::new(vec![list, s0.clone(), s1.clone()]).unwrap();
let exploded = df.explode(["foo"]).unwrap();
assert_eq!(exploded.shape(), (9, 3));
assert_eq!(exploded.column("C").unwrap().i32().unwrap().get(8), Some(1));
assert_eq!(exploded.column("B").unwrap().i32().unwrap().get(8), Some(3));
assert_eq!(
exploded.column("foo").unwrap().i8().unwrap().get(8),
Some(2)
);
}
#[test]
#[cfg_attr(miri, ignore)]
fn test_explode_df_empty_list() -> PolarsResult<()> {
let s0 = Series::new("a", &[1, 2, 3]);
let s1 = Series::new("b", &[1, 1, 1]);
let list = Series::new("foo", &[s0, s1.clone(), s1.clear()]);
let s0 = Series::new("B", [1, 2, 3]);
let s1 = Series::new("C", [1, 1, 1]);
let df = DataFrame::new(vec![list, s0.clone(), s1.clone()])?;
let out = df.explode(["foo"])?;
let expected = df![
"foo" => [Some(1), Some(2), Some(3), Some(1), Some(1), Some(1), None],
"B" => [1, 1, 1, 2, 2, 2, 3],
"C" => [1, 1, 1, 1, 1, 1, 1],
]?;
assert!(out.equals_missing(&expected));
let list = Series::new("foo", [s0.clone(), s1.clear(), s1.clone()]);
let df = DataFrame::new(vec![list, s0, s1])?;
let out = df.explode(["foo"])?;
let expected = df![
"foo" => [Some(1), Some(2), Some(3), None, Some(1), Some(1), Some(1)],
"B" => [1, 1, 1, 2, 3, 3, 3],
"C" => [1, 1, 1, 1, 1, 1, 1],
]?;
assert!(out.equals_missing(&expected));
Ok(())
}
#[test]
#[cfg_attr(miri, ignore)]
fn test_explode_single_col() -> PolarsResult<()> {
let s0 = Series::new("a", &[1i32, 2, 3]);
let s1 = Series::new("b", &[1i32, 1, 1]);
let list = Series::new("foo", &[s0, s1]);
let df = DataFrame::new(vec![list])?;
let out = df.explode(["foo"])?;
let out = out
.column("foo")?
.i32()?
.into_no_null_iter()
.collect::<Vec<_>>();
assert_eq!(out, &[1i32, 2, 3, 1, 1, 1]);
Ok(())
}
#[test]
#[cfg_attr(miri, ignore)]
fn test_melt() -> PolarsResult<()> {
let df = df!("A" => &["a", "b", "a"],
"B" => &[1, 3, 5],
"C" => &[10, 11, 12],
"D" => &[2, 4, 6]
)
.unwrap();
let melted = df.melt(["A", "B"], ["C", "D"])?;
assert_eq!(
Vec::from(melted.column("value")?.i32()?),
&[Some(10), Some(11), Some(12), Some(2), Some(4), Some(6)]
);
let args = MeltArgs {
id_vars: vec![],
value_vars: vec![],
..Default::default()
};
let melted = df.melt2(args).unwrap();
let value = melted.column("value")?;
// String because of supertype
let value = value.str()?;
let value = value.into_no_null_iter().collect::<Vec<_>>();
assert_eq!(
value,
&["a", "b", "a", "1", "3", "5", "10", "11", "12", "2", "4", "6"]
);
let args = MeltArgs {
id_vars: vec!["A".into()],
value_vars: vec![],
..Default::default()
};
let melted = df.melt2(args).unwrap();
let value = melted.column("value")?;
let value = value.i32()?;
let value = value.into_no_null_iter().collect::<Vec<_>>();
assert_eq!(value, &[1, 3, 5, 10, 11, 12, 2, 4, 6]);
let variable = melted.column("variable")?;
let variable = variable.str()?;
let variable = variable.into_no_null_iter().collect::<Vec<_>>();
assert_eq!(variable, &["B", "B", "B", "C", "C", "C", "D", "D", "D"]);
assert!(melted.column("A").is_ok());
Ok(())
}
}