1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
use polars_error::constants::LENGTH_LIMIT_MSG;

use super::*;

#[allow(clippy::all)]
fn from_chunks_list_dtype(chunks: &mut Vec<ArrayRef>, dtype: DataType) -> DataType {
    // ensure we don't get List<null>
    let dtype = if let Some(arr) = chunks.get(0) {
        arr.data_type().into()
    } else {
        dtype
    };

    match dtype {
        #[cfg(feature = "dtype-categorical")]
        // arrow dictionaries are not nested as dictionaries, but only by their keys, so we must
        // change the list-value array to the keys and store the dictionary values in the datatype.
        // if a global string cache is set, we also must modify the keys.
        DataType::List(inner)
            if matches!(
                *inner,
                DataType::Categorical(None, _) | DataType::Enum(None, _)
            ) =>
        {
            let array = concatenate_owned_unchecked(chunks).unwrap();
            let list_arr = array.as_any().downcast_ref::<ListArray<i64>>().unwrap();
            let values_arr = list_arr.values();
            let cat = unsafe {
                Series::_try_from_arrow_unchecked(
                    "",
                    vec![values_arr.clone()],
                    values_arr.data_type(),
                )
                .unwrap()
            };

            // we nest only the physical representation
            // the mapping is still in our rev-map
            let arrow_dtype = ListArray::<i64>::default_datatype(ArrowDataType::UInt32);
            let new_array = ListArray::new(
                arrow_dtype,
                list_arr.offsets().clone(),
                cat.array_ref(0).clone(),
                list_arr.validity().cloned(),
            );
            chunks.clear();
            chunks.push(Box::new(new_array));
            DataType::List(Box::new(cat.dtype().clone()))
        },
        #[cfg(all(feature = "dtype-array", feature = "dtype-categorical"))]
        DataType::Array(inner, width)
            if matches!(
                *inner,
                DataType::Categorical(None, _) | DataType::Enum(None, _)
            ) =>
        {
            let array = concatenate_owned_unchecked(chunks).unwrap();
            let list_arr = array.as_any().downcast_ref::<FixedSizeListArray>().unwrap();
            let values_arr = list_arr.values();
            let cat = unsafe {
                Series::_try_from_arrow_unchecked(
                    "",
                    vec![values_arr.clone()],
                    values_arr.data_type(),
                )
                .unwrap()
            };

            // we nest only the physical representation
            // the mapping is still in our rev-map
            let arrow_dtype = FixedSizeListArray::default_datatype(ArrowDataType::UInt32, width);
            let new_array = FixedSizeListArray::new(
                arrow_dtype,
                cat.array_ref(0).clone(),
                list_arr.validity().cloned(),
            );
            chunks.clear();
            chunks.push(Box::new(new_array));
            DataType::Array(Box::new(cat.dtype().clone()), width)
        },
        _ => dtype,
    }
}

impl<T, A> From<A> for ChunkedArray<T>
where
    T: PolarsDataType<Array = A>,
    A: Array,
{
    fn from(arr: A) -> Self {
        Self::with_chunk("", arr)
    }
}

impl<T> ChunkedArray<T>
where
    T: PolarsDataType,
{
    pub fn with_chunk<A>(name: &str, arr: A) -> Self
    where
        A: Array,
        T: PolarsDataType<Array = A>,
    {
        unsafe { Self::from_chunks(name, vec![Box::new(arr)]) }
    }

    pub fn with_chunk_like<A>(ca: &Self, arr: A) -> Self
    where
        A: Array,
        T: PolarsDataType<Array = A>,
    {
        Self::from_chunk_iter_like(ca, std::iter::once(arr))
    }

    pub fn from_chunk_iter<I>(name: &str, iter: I) -> Self
    where
        I: IntoIterator,
        T: PolarsDataType<Array = <I as IntoIterator>::Item>,
        <I as IntoIterator>::Item: Array,
    {
        let chunks = iter
            .into_iter()
            .map(|x| Box::new(x) as Box<dyn Array>)
            .collect();
        unsafe { Self::from_chunks(name, chunks) }
    }

    pub fn from_chunk_iter_like<I>(ca: &Self, iter: I) -> Self
    where
        I: IntoIterator,
        T: PolarsDataType<Array = <I as IntoIterator>::Item>,
        <I as IntoIterator>::Item: Array,
    {
        let chunks = iter
            .into_iter()
            .map(|x| Box::new(x) as Box<dyn Array>)
            .collect();
        unsafe { Self::from_chunks_and_dtype_unchecked(ca.name(), chunks, ca.dtype().clone()) }
    }

    pub fn try_from_chunk_iter<I, A, E>(name: &str, iter: I) -> Result<Self, E>
    where
        I: IntoIterator<Item = Result<A, E>>,
        T: PolarsDataType<Array = A>,
        A: Array,
    {
        let chunks: Result<_, _> = iter
            .into_iter()
            .map(|x| Ok(Box::new(x?) as Box<dyn Array>))
            .collect();
        unsafe { Ok(Self::from_chunks(name, chunks?)) }
    }

    pub(crate) fn from_chunk_iter_and_field<I>(field: Arc<Field>, chunks: I) -> Self
    where
        I: IntoIterator,
        T: PolarsDataType<Array = <I as IntoIterator>::Item>,
        <I as IntoIterator>::Item: Array,
    {
        assert_eq!(
            std::mem::discriminant(&T::get_dtype()),
            std::mem::discriminant(&field.dtype)
        );

        let mut length = 0;
        let mut null_count = 0;
        let chunks = chunks
            .into_iter()
            .map(|x| {
                length += x.len();
                null_count += x.null_count();
                Box::new(x) as Box<dyn Array>
            })
            .collect();

        unsafe {
            ChunkedArray::new_with_dims(
                field,
                chunks,
                length.try_into().expect(LENGTH_LIMIT_MSG),
                null_count as IdxSize,
            )
        }
    }

    /// Create a new [`ChunkedArray`] from existing chunks.
    ///
    /// # Safety
    /// The Arrow datatype of all chunks must match the [`PolarsDataType`] `T`.
    pub unsafe fn from_chunks(name: &str, mut chunks: Vec<ArrayRef>) -> Self {
        let dtype = match T::get_dtype() {
            dtype @ DataType::List(_) => from_chunks_list_dtype(&mut chunks, dtype),
            #[cfg(feature = "dtype-array")]
            dtype @ DataType::Array(_, _) => from_chunks_list_dtype(&mut chunks, dtype),
            dt => dt,
        };
        Self::from_chunks_and_dtype(name, chunks, dtype)
    }

    /// # Safety
    /// The Arrow datatype of all chunks must match the [`PolarsDataType`] `T`.
    pub unsafe fn with_chunks(&self, chunks: Vec<ArrayRef>) -> Self {
        ChunkedArray::new_with_compute_len(self.field.clone(), chunks)
    }

    /// Create a new [`ChunkedArray`] from existing chunks.
    ///
    /// # Safety
    /// The Arrow datatype of all chunks must match the [`PolarsDataType`] `T`.
    pub unsafe fn from_chunks_and_dtype(
        name: &str,
        chunks: Vec<ArrayRef>,
        dtype: DataType,
    ) -> Self {
        // assertions in debug mode
        // that check if the data types in the arrays are as expected
        #[cfg(debug_assertions)]
        {
            if !chunks.is_empty() && !chunks[0].is_empty() && dtype.is_primitive() {
                assert_eq!(chunks[0].data_type(), &dtype.to_arrow(true))
            }
        }
        let field = Arc::new(Field::new(name, dtype));
        ChunkedArray::new_with_compute_len(field, chunks)
    }

    pub(crate) unsafe fn from_chunks_and_dtype_unchecked(
        name: &str,
        chunks: Vec<ArrayRef>,
        dtype: DataType,
    ) -> Self {
        let field = Arc::new(Field::new(name, dtype));
        ChunkedArray::new_with_compute_len(field, chunks)
    }

    pub fn full_null_like(ca: &Self, length: usize) -> Self {
        let chunks = std::iter::once(T::Array::full_null(length, ca.dtype().to_arrow(true)));
        Self::from_chunk_iter_like(ca, chunks)
    }
}

impl<T> ChunkedArray<T>
where
    T: PolarsNumericType,
{
    /// Create a new ChunkedArray by taking ownership of the Vec. This operation is zero copy.
    pub fn from_vec(name: &str, v: Vec<T::Native>) -> Self {
        Self::with_chunk(name, to_primitive::<T>(v, None))
    }

    /// Create a new ChunkedArray from a Vec and a validity mask.
    pub fn from_vec_validity(name: &str, values: Vec<T::Native>, buffer: Option<Bitmap>) -> Self {
        let arr = to_array::<T>(values, buffer);
        ChunkedArray::new_with_compute_len(Arc::new(Field::new(name, T::get_dtype())), vec![arr])
    }

    /// Create a temporary [`ChunkedArray`] from a slice.
    ///
    /// # Safety
    /// The lifetime will be bound to the lifetime of the slice.
    /// This will not be checked by the borrowchecker.
    pub unsafe fn mmap_slice(name: &str, values: &[T::Native]) -> Self {
        Self::with_chunk(name, arrow::ffi::mmap::slice(values))
    }
}

impl BooleanChunked {
    /// Create a temporary [`ChunkedArray`] from a slice.
    ///
    /// # Safety
    /// The lifetime will be bound to the lifetime of the slice.
    /// This will not be checked by the borrowchecker.
    pub unsafe fn mmap_slice(name: &str, values: &[u8], offset: usize, len: usize) -> Self {
        let arr = arrow::ffi::mmap::bitmap(values, offset, len).unwrap();
        Self::with_chunk(name, arr)
    }
}

impl<'a, T> From<&'a ChunkedArray<T>> for Vec<Option<T::Physical<'a>>>
where
    T: PolarsDataType,
{
    fn from(ca: &'a ChunkedArray<T>) -> Self {
        let mut out = Vec::with_capacity(ca.len());
        for arr in ca.downcast_iter() {
            out.extend(arr.iter())
        }
        out
    }
}
impl From<StringChunked> for Vec<Option<String>> {
    fn from(ca: StringChunked) -> Self {
        ca.iter().map(|opt| opt.map(|s| s.to_string())).collect()
    }
}

impl From<BooleanChunked> for Vec<Option<bool>> {
    fn from(ca: BooleanChunked) -> Self {
        let mut out = Vec::with_capacity(ca.len());
        for arr in ca.downcast_iter() {
            out.extend(arr.iter())
        }
        out
    }
}