polars.DataFrame.write_parquet#

DataFrame.write_parquet(
file: str | Path | BytesIO,
*,
compression: ParquetCompression = 'zstd',
compression_level: int | None = None,
statistics: bool | str | dict[str, bool] = True,
row_group_size: int | None = None,
data_page_size: int | None = None,
use_pyarrow: bool = False,
pyarrow_options: dict[str, Any] | None = None,
) None[source]#

Write to Apache Parquet file.

Parameters:
file

File path or writable file-like object to which the result will be written.

compression{‘lz4’, ‘uncompressed’, ‘snappy’, ‘gzip’, ‘lzo’, ‘brotli’, ‘zstd’}

Choose “zstd” for good compression performance. Choose “lz4” for fast compression/decompression. Choose “snappy” for more backwards compatibility guarantees when you deal with older parquet readers.

compression_level

The level of compression to use. Higher compression means smaller files on disk.

  • “gzip” : min-level: 0, max-level: 10.

  • “brotli” : min-level: 0, max-level: 11.

  • “zstd” : min-level: 1, max-level: 22.

statistics

Write statistics to the parquet headers. This is the default behavior.

Possible values:

  • True: enable default set of statistics (default)

  • False: disable all statistics

  • “full”: calculate and write all available statistics. Cannot be combined with use_pyarrow.

  • { "statistic-key": True / False, ... }. Cannot be combined with use_pyarrow. Available keys: - “min”: column minimum value (default: True) - “max”: column maximum value (default: True) - “distinct_count”: number of unique column values (default: False) - “null_count”: number of null values in column (default: True)

row_group_size

Size of the row groups in number of rows. Defaults to 512^2 rows.

data_page_size

Size of the data page in bytes. Defaults to 1024^2 bytes.

use_pyarrow

Use C++ parquet implementation vs Rust parquet implementation. At the moment C++ supports more features.

pyarrow_options

Arguments passed to pyarrow.parquet.write_table.

If you pass partition_cols here, the dataset will be written using pyarrow.parquet.write_to_dataset. The partition_cols parameter leads to write the dataset to a directory. Similar to Spark’s partitioned datasets.

Examples

>>> import pathlib
>>>
>>> df = pl.DataFrame(
...     {
...         "foo": [1, 2, 3, 4, 5],
...         "bar": [6, 7, 8, 9, 10],
...         "ham": ["a", "b", "c", "d", "e"],
...     }
... )
>>> path: pathlib.Path = dirpath / "new_file.parquet"
>>> df.write_parquet(path)

We can use pyarrow with use_pyarrow_write_to_dataset=True to write partitioned datasets. The following example will write the first row to ../watermark=1/.parquet and the other rows to ../watermark=2/.parquet.

>>> df = pl.DataFrame({"a": [1, 2, 3], "watermark": [1, 2, 2]})
>>> path: pathlib.Path = dirpath / "partitioned_object"
>>> df.write_parquet(
...     path,
...     use_pyarrow=True,
...     pyarrow_options={"partition_cols": ["watermark"]},
... )